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Micropolar flow in a porous channel with
high mass transfer
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Abstract

Two dimensional flow of a micropolar fluid in a porous
channel is investigated. The flow is driven by suction or in-
jection at the channel walls, and the micropolar model due
to Eringen is used to describe the working fluid. An ex-
tension of Berman’s similarity transform is used to reduce
the governing equations to a set of non-linear coupled ordi-
nary differential equations. The latter are solved for large
mass transfer via a perturbation analysis where the inverse
of the cross-flow Reynolds number is used as the perturbing
parameter. Complementary numerical solutions for strong
injection are also obtained using a quasilinearisation scheme,
and good agreement is observed between the solutions ob-
tained from the perturbation analysis and the computations.

∗HPC and Research Support, QUT, Australia.
mailto:n.kelson@qut.com

†Institut Universitaire de Technologie, Valenciennes, France.
‡Centre in Statistical Science and Industrial Mathematics, QUT,

Australia.
0See http://anziamj.austms.org.au/V44/CTAC2001/Kels for this article,

c© Austral. Mathematical Soc. 2003. Published 1 April 2003. ISSN 1446-8735

mailto:n.kelson@qut.com
http://anziamj.austms.org.au/V44/CTAC2001/Kels


Contents C480

Contents

1 Introduction C481

2 Defining equations C482

3 Perturbation analysis C485

4 Numerical method C487

5 Results and discussion C489

6 Conclusion C493

References C493

Nomenclature

j micro-inertia density (m2)
q mass transfer parameter (m s−1)
s microrotation boundary condition parameter

u, v cartesian velocity components (m s−1)
x, y cartesian coordinate parallel and normal to channel (m)
F, G dimensionless stream function and microrotation
N microrotation/angular velocity (s−1)

N1,2,3 dimensionless parameters
η dimensionless normal distance

µ, κ dynamic viscosity and coupling coefficient (kg m−1 s−1)
ν kinematic viscosity (m2 s−1)
νs microrotation/spin-gradient viscosity (m kg s−1)
ρ fluid density (kg m−3)
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1 Introduction

The theory of micropolar fluids was originally formulated by Erin-
gen [4]. In essence, the theory introduces new material parame-
ters, an additional independent vector field — the microrotation
— and new constitutive equations which must be solved simultane-
ously with the usual equations for Newtonian flow. The desire to
model the non-Newtonian flow of fluids containing rotating micro-
constituents provided initial motivation for the development of the
theory, but subsequent studies have successfully applied the model
to a wide range of applications including blood flow, lubricants,
porous media, turbulent shear flows, and flow in capillaries and mi-
crochannels. For a resume of the theory and more recent literature
see the book by Lukaszewicz [10].

We analyse self-similar boundary layer flow of a micropolar fluid
in a porous channel, where the flow is driven by uniform mass trans-
fer through the channel walls. The corresponding Newtonian fluid
model was first studied by Berman [1], who described an exact so-
lution of the Navier-Stokes equations by assuming a self-similar so-
lution and reducing the governing partial differential equations to
a nonlinear ordinary differential equation of fourth order. The so-
lution is of potential value in understanding more realistic flows in
channels and pipes, and study of Berman’s exact solution and gen-
eralisations of it have attracted numerous studies subsequently, for
example Yuan [15], Robinson [14], Zaturska et al. [16], Desseaux [2].

With a view to understanding how the micropolar theory may
be used to model realistic non-Newtonian flow applications, the au-
thors have considered micropolar extensions to this and other prob-
lems, see for example, Kelson & Desseaux [7], Kelson & Farrell [8],
Desseaux & Kelson [3]. In the absence of extensive experimental
data for micropolar fluids, the aim of this paper is primarily the-
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oretical: we wish to determine how the material constants of the
micropolar fluid influence the flow for large mass transfer through
the channel walls. To this end, a perturbation scheme based on the
inverse of the cross-flow Reynolds number and numerical quasilin-
earisation scheme are employed here.

This paper is organised as follows. In section 2 the governing
equations and similarity transformations are presented, and appro-
priate values for the physical parameters are discussed. In section 3,
a perturbation analysis is used to derive closed form solutions to first
order, and the numerical methods used here are briefly described in
section 4. The analytic and numerical results are discussed in sec-
tion 5, and finally, the conclusions of this study are summarised in
section 6.

2 Defining equations

We consider steady, incompressible, laminar flow of a micropolar
fluid along a two-dimensional channel with porous walls through
which fluid is uniformly injected or removed with speed q. Using
cartesian coordinates, the channel walls are parallel to the x-axis
and located at y = ±h , where 2h is the channel width.

The relevant equations governing the flow are (see, for example,
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Ramachandran et al. [13]):
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Compared with Newtonian fluids, the governing equations include
the microrotation or angular velocity N whose direction of rotation
is in the xy-plane, and the material parameters j, κ and νs . For
consistency with other micropolar studies, all material parameters
are taken as independent and constant. When these constants are
zero, the governing equations reduce to those given by Berman [1].

The appropriate physical boundary conditions are

u(x,±h) = 0, v(x,±h) = ±q , N(x,±h) = −s
∂u

∂y

∣∣∣∣
(x,±h)

, (5a)

and assuming that the flow is symmetric about y = 0 ,

∂u

∂y
(x, 0) = v(x, 0) = 0 , (5b)

where q > 0 corresponds to suction, q < 0 to injection, and s is
a boundary parameter that is used to model the extent to which
microelements are free to rotate in the vicinity of the channel walls.
For example, the value s = 0 corresponds to the case where microele-
ments close to a wall are unable to rotate, whereas the value s = 1/2
corresponds to the case where the microrotation is equal to the fluid
vorticity at the boundary (see Lukaszewicz [10]).
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To simplify the governing equations, we generalise Berman’s sim-
ilarity solution [1] to include micropolar effects by assuming a stream
function and microrotation of the form

Ψ = −q x F (η) , N =
q x

h2
G(η) , (6)

where

η = y/h , u =
∂Ψ

∂y
= −q x

h
F ′(η) , v = −∂Ψ

∂x
= qF (η) .

In addition, we introduce the dimensionless micropolar parameters
and non-zero cross-flow Reynolds number

N1 =
κ

ρν
, N2 =

νs

ρνh2
, N3 =

j

h2
, and Re =

qh

ν
(7)

where Re > 0 corresponds to suction, and Re < 0 to injection.

Substituting (6) and (7) into (1–4) reduces the governing equa-
tions to ∂2p/∂x ∂η = 0 ,

Re[FF ′′′ − F ′F ′′] = (1 + N1)F
IV −N1G

′′ (8a)

or, after integrating once for some constant K,

Re[FF ′′ − (F ′)2] = (1 + N1)F
′′′ −N1G

′ + K , (8b)

and
N3Re(FG′ − F ′G) = N1(F

′′ − 2G) + N2G
′′ . (9)

Using ε = 1/Re , (8b) and (9) are written

FF ′′ − (F ′)2 = ε(1 + N1)F
′′′ − εN1G

′ + C , (10)

N3(FG′ − F ′G) = εN1(F
′′ − 2G) + εN2G

′′ , (11)
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where C = K/Re is to be determined as a function of the boundary
conditions. The latter are

F (±1) = 1 , F ′(±1) = 0 , G(±1) = sF ′′(±1) , (12a)

or assuming symmetric flow in the channel

F (0) = F ′′(0) = F ′(1) = 0 , F (1) = 1 , G(1) = sF ′′(1) . (12b)

For a given cross-flow Reynolds number Re, the problem as defined
contains four additional micropolar parameters s, N1,2,3 . In general,
the parameters may depend on the concentration and shape of the
microelements, and a determination of the parameter values is a
difficult matter [5]. The experimental work of Migun and colleagues
(see, for example, Migun [12], Kolpashchikov et al. [9], Migoun &
Prokhorenko [11]) suggests that N1 = O(1) for water in capillary
tubes, whereas N2 and N3 must be non-negative for micropolar
fluids [4]. For comparison with existing studies, in this work we
set s = 0 , N1,2 = 1 , N3 = 10−1 and investigate solution behaviour
as Re is varied.

3 Perturbation analysis

The solution of (10) and (11) is sought by substituting series expan-
sions for F , G and C near ε = 0 of the form

F = f0 + εf1 + ε2f2 + · · · ,

G = g0 + εg1 + ε2g2 + · · · ,

C = c0 + εc1 + ε2c2 + · · · ,

(13)

and collecting terms in equal powers of ε to obtain a heirachy of
ordinary differential equations for the functions fn and gn . The



3 Perturbation analysis C486

first two equations for fn are

f0f
′′
0 − (f ′0)

2 = c0 , (14a)

f0f
′′
1 − 2f ′0f

′
1 + f ′′0 f1 = c1 + (1 + N1)f

′′′
0 −N1g

′
0 , (14b)

and the corresponding equations for gn are

f0g
′
0 − f ′0g0 = 0 , (15a)

N3(f0g
′
1 − f ′0g1) = N3(f

′
1g0 − f1g

′
0) + N1(f

′′
0 − 2g0) + N2g

′′
0 . (15b)

Assuming that the various terms in (10) and (11) are of similar
size, we anticipate that equations (14) and (15) apply provided that
N1 < |Re| , N3 6= 0 and N3 > |ε|N1,2 .

The boundary conditions for equations (14) and (15) are

f0(0) = f ′′0 (0) = f ′0(1) = 0 , f0(1) = 1 , g0(1) = sf ′′0 (1) ; (16a)

fn(0) = f ′′n(0) = f ′n(1) = 0 , fn(1) = 0 , gn(1) = sf ′′n(1) (16b)

for n > 0 .

The leading order solutions f0 and g0 to equations (14a) and (15a)
that satisfy all the required boundary conditions (16a) are

f0(η) = sin
(πη

2

)
, g0(η) = −1

4
sπ2 sin

(πη

2

)
, c0 = −π2

4
. (17)

Note that the ordinary differential equation (14b) for the first
order stream function is linear and second order with variable coef-
ficients. Using the solutions for f0 and g0 given in (17) and equating
the rhs of (14b) to zero, the general solution to the resulting ho-
mogeneous equation is of the form

c12 cos
(πη

2

)
+ c13

[
2

π
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(πη

2

)
− η cos

(πη

2

)]
, (18)
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where c12,13 are constants. Using techniques such as reduction of
order or variation of parameters [17, e.g.], a solution of (14b) is

f1 =− 2

π2
c1 sin

(πη

2

)
+

[
c12 +

Ã

2

∫ η

1

r

sin(πr/2)
dr

]
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2

)
+

[
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Ã
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log

∣∣∣tan (πη

4

)∣∣∣] [
2

π
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(πη

2

)
− η cos

(πη

2

)]
,

where Ã =
π3

8
[1 + N1(1− s)] .

(19)

In general, a solution for f1 with four arbitrary constants is re-
quired. In the present case, the condition f ′′1 (0) = 0 in (16b) is
redundant, and the values of the constants for a symmetric solution
satisfying all the boundary conditions are

c1 = − 2

π
Ã

(
1 +

π2

4
I0

)
, c12 = −Ã

2
I0 , c13 =

c1

π

and I0 =

∫ 0

1

r

sin(πr/2)
dr ≈ −0.742454 .

(20)

The solutions described above are exact for the limiting case N1 =
0 , and the first order solution F ≈ f0 + εf1 is expected to provide
a good approximation to the exact solution for large mass transfer.

4 Numerical method

For the computational study we sought the solution of the coupled
two-point non-linear boundary value problem (8a), (9) and (12a).
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Our previous experience [6, e.g.] suggests that a readily adaptable
and robust approach to the numerical solution of micropolar flow
problems of this type is provided by an iterative scheme based on
quasilinearisation.

In this approach we let

{Wk : k = 1, . . . , 6} = {G, G′, F, F ′, F ′′, F ′′′}

be an approximate current solution and {Zk : k = 1, . . . , 6} be an
improved solution for F and G in equations (8a) and (9). The
latter are rewritten as a coupled first order system of the form
Z ′

k = Lk(Z1, Z2, . . . , Z6) and linearised by forming a Taylor series
expansion around the current estimate Wk and neglecting second
and higher derivative terms, that is,

Z ′
k = Lk(W1, W2, . . . ,W6) +

6∑
j=1

(Zj −Wj)
∂ Lk

∂Zj

∣∣∣∣
Zj=Wj

. (21)

For example, the linearisation of (9) is obtained by setting N2L2 =
N3Re(Z3Z2−Z4Z1)+N1(2Z1−Z5) and using equation (21) to yield

N2Z
′
2 = N3Re(Z2W3 + Z3W2 − Z1W4 − Z4W1)

+ N1(2Z1 − Z5) + N3Re(W4W1 −W3W2) .
(22)

To solve for the Zk at each iteration, the solutions to four sep-
arate initial value problems (ivp), denoted {Zi

k : i = 0, . . . , 3} ,
with initial conditions given in Table 1 are first obtained using a
Runge-Kutta scheme. The solution Zk is then formed via a lin-
ear combination of the Zi

k such that the required conditions at the
second boundary are satisfied.

This solution is then compared with the solution at the previous
step, and a further iteration is performed if convergence has not
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Table 1: Initial conditions for the ivps {Zi
k : i = 0, . . . , 3} .

i G G′ F F ′ F ′′ F ′′′

0 0 W2(−1) −1 0 W5(−1) W6(−1)
1 0 1 0 0 0 0
2 0 0 0 0 1 0
3 0 0 0 0 0 1

been achieved or greater accuracy is desired. An initial approximate
solution is needed to initiate the iterative scheme, and the leading
order expressions given in (17) were used for this purpose.

5 Results and discussion

We begin with some observations regarding the analytic solutions
presented in Section 3. Note that none of the micropolar parame-
ters appear in the leading order solution f0 for the stream function
given in equation (17); we therefore anticipate that the bulk flow
is increasingly insensitive to micropolar effects for increasing mass
transfer through the channel walls.

Sample complementary numerical results are given in Figure 1,
where computed U -velocity profiles for a range of injection Reynolds
numbers (Re < 0) are presented, along with the leading order solu-
tion f ′0 . See in Figure 1(a), the computed profiles for F ′ are close to
the leading order analytic solution for the entire range of Re chosen
(due to symmetry, profiles are shown over half the channel width
only). More detail of the U -velocity profiles near the channel cen-
treline (η = 0) is shown in Figure 1(b). From the figure, observe
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that the computed profiles for F ′ approach the leading order profile
for f ′0 as the mass transfer through the channel walls increases, as
expected. With regard to the numerical results reported here, we
found that the quasilinearisation scheme converged without diffi-
culty, with no more than 5 iterations required in most cases.

Turning to the first order solution for the stream function given
in equations (19) and (20), note that the parameters N2 and N3 do
not appear. For the present case, this implies that the bulk flow will
quickly become relatively insensitive to changes in these micropolar
parameters as the wall mass transfer rate is increased.

In Figure 2, computed U -velocity (F ′) profiles are presented and
compared with the corresponding leading order (f ′0) and first order
(f ′0 + εf ′1) analytic solutions. Recalling the condition N3 > |ε|N1,2

(discussed in Section 3), we note that the results presented in Fig-
ure 2(a) and 2(b) correspond to N3/(|ε|N1,2) = 2 and 5, respectively.
In both cases, the first order analytic solution is in very good agree-
ment with the corresponding computed profile, and the totality of
our numerical results for injection indicate that this is always ob-
served provided that the condition N3/(|ε|N1,2) > 1 is met.

In principle, the analysis presented in Section 3 is valid for both
strong suction (Re > 0) and strong injection (Re < 0). However,
note that the corresponding Newtonian flow with large suction is
known to have multiple solutions (see Zaturska et al. [16]). Fur-
thermore, our numerical results to date indicate that micropolar
flow due to large suction is likely to be more complex than the
corresponding Newtonian flow. For example, our preliminary com-
putations for large suction [3] indicate that discontinuities can also
occur and are a function of the various micropolar parameters in the
model. Currently, our research efforts are directed at analysing this
situation in detail and we plan to present our findings in a future
paper when completed.
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Figure 1: (a) computed U -velocity F ′ for N1 = N2 = 1 , N3 = 0.1 ,
s = 0 and Re = −1 → −200 cf. leading order solution f ′0 ; (b) detail.
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Figure 2: computed U -velocity (F ′) for N1 = N2 = 1 , N3 = 0.1 ,
s = 0 cf. leading (f ′0) and first order (f ′0 + εf ′1) solutions: (a) Re =
−20 ; (b) Re = −50 .
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6 Conclusion

In this paper we have presented solutions obtained from a pertur-
bation analysis for micropolar flow in a porous channel with large
mass transfer through the channel walls, and indicated what these
solutions mean in terms of the relative importance of the various mi-
cropolar parameters on the bulk flow predictions. Complementary
numerical solutions were obtained without difficulty via a quasilin-
earisation scheme, and very good agreement between the solutions
obtained from the perturbation analysis and the computations was
observed for strong injection. Our results to date suggest that the
case of strong suction is more complex. In future research we in-
tend to analyse this situation in detail, with particular emphasis
on testing efficient computational methods for investigating the so-
lution behaviour in 5 parameter (Re, s, N1,2,3) space. In addition
to numerical algorithm testing, we hope that the results presented
here will aid in the understanding of more realistic micropolar fluid
applications in related flow setups.
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