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Holistic discretisation of shear dispersion
in a two-dimensional channel

T. MacKenzie∗ A. J. Roberts†

(14 January 2003, corrected August 9, 2018)

Abstract

Consider the spread of a contaminant along a 2D channel
or river. We directly derive the 1D discrete numerical model
from the 2D advective and diffusive dynamics for the evolu-
tion of the contaminant. The holistic discretisation of the 2D
advection-diffusion equation is placed within the purview of
centre manifold theory by dividing the physical domain into
rectangular 2D elements through introducing artificial in-
sulating boundaries which are later removed. The resulting
holistic discretisation is consistent with the 1D Taylor model
for shear dispersion in the channel. This new technique ac-
curately models the subgrid scale processes and provides a
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direct link between the 1D numerical discretisation and the
original 2D physical dynamics. Centre manifold theory also
systematically incorporates the physical inlet and outlet con-
ditions into the 1D discretisation. This method is straight-
forwardly extended to nonlinear reaction-diffusion equations
and more complex geometries.
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1 Introduction

Consider the dispersion of a pollutant or other tracer along a river,
channel or pipe. Because of the long narrow geometry we are pri-
marily interested in the evolution along the river, channel or pipe.
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Figure 1: The physical processes of advection and diffusion spread
a contaminant along a channel.

Thus instead of solving a three-dimensional advection-diffusion equa-
tion we typically seek a one-dimensional model describing the lon-
gitudinal dynamics. Then numerical solutions are used for predic-
tions. For definiteness we consider here the advection-diffusion of a
contaminant of concentration c(x, y, t) in a two-dimensional channel
of non-dimensional width 2b as shown in Figure 1. The governing
advection-diffusion equation is

∂c

∂t
+ u

∂c

∂x
= ∇ · (κ∇c) in − b < y < b , (1)

where x measures distance along the channel, u(y) is the later-
ally varying, longitudinal advection velocity, and κ is the coefficient
of diffusion. Originally Taylor [13] derived the corresponding one-
dimensional model,

∂C

∂t
= −U ∂C

∂x
+D

∂2C

∂x2
, (2)

for the cross-channel averaged concentration C(x, t) where U is the
cross-channel mean advection velocity and D ∝ U2b2/κ is an ef-
fective dispersion coefficient along the channel. Observe that the
dispersion coefficient D is large when the molecular diffusivity κ is
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small. The Taylor model (2) would then be discretised on some
numerical grid, to say

∂Cj

∂t
≈ −U

h
(Cj+1 − Cj−1) +

D

h2
(Cj+1 − 2Cj + Cj−1) , (3)

in order to make predictions in any given situation. However, there
are difficulties in deducing the correct boundary conditions to use
at the upstream inlet and the downstream outlet [12]. Smith [12]
and Roberts [6] developed arguments for deriving the appropriate
boundary conditions for the Taylor model, but the required tech-
niques are difficult even for this simple problem. Instead here we
explore bypassing the one-dimensional Taylor model (2) by instead
deriving a numerical model, such as (3) or more accurately (15), di-
rectly from the physical dynamics expressed in the two-dimensional
advection-diffusion problem (1). The analysis is a variant of holistic
discretisation introduced in [8]. The application of this technique is
explored here in a relatively simple dispersion problem.

There are several benefits of this single step approach of deriving
the 1D discretisation (3) directly from the 2D continuum model (1).
Firstly, it is simpler; there is a direct connection between the nu-
merical model we obtain in §4 and the original advection-diffusion
equation. Secondly, the derivation described in §5 of a numerical
discretisation near the inlet and outlet is straightforward (as intro-
duced for Burgers’ equation in [9]). Lastly, being based upon centre
manifold theory [1, 2, e.g.], as argued in §2–3 we are reasonably
assured of fidelity between the numerical model and the original
equations. Indeed it is this assurance of fidelity that ensures we de-
rive the appropriate shear dispersion coefficient D ∝ U2b2/κ in the
numerical model (3), without ever assuming large x scales, an as-
sumption formerly absolutely crucial in deriving Taylor’s model (2).

To make the problem even more definite we follow Watt and
Roberts [14] by deciding that the cross-channel profile of the advec-
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tion velocity and the coefficient of diffusion are both parabolic:

u = U
3

2
(1− y2/b2) , and κ = K (1− y2/b2) . (4)

The advantage of these particular choices is that the subgrid scale
field is conveniently found analytically—other choices require nu-
merical solutions in deriving the numerical model. These choices
are physically relevant to dispersion in a river, estuary or channel
where turbulent mixing varies across the channel due to, for exam-
ple, cross-channel variations in depth. Partnering this choice for the
(turbulent) diffusivity κ(y) are boundary conditions of zero flux of
contaminant c across the sides of the channel: because κ → 0 as
y → ±b a sufficient condition is

∂c

∂y
is bounded on y = ±b . (5)

We non-dimensionalise with respect to the channel half-width, b,
and a cross channel diffusion time, b2/K: in effect b = K = 1 and
U is replaced by the Peclet number P = Ub/K. See that Pb is the
downstream advection distance in a cross channel diffusion time. In
application the Peclet number is typically large.

These specific choices form a problem which was studied by Watt
and Roberts [14]. They derived the one-dimensional Taylor model,
generalised to higher order,

∂C

∂t
= −P ∂C

∂x
+

(
2

3
+
P2

30

)
∂2C

∂x2
+

(
−2P

45
+
P3

630

)
∂3C

∂x3

+

(
2

135
− P

2

315
− 13P4

189000

)
∂4C

∂x4
+ · · · , (6)

where C(x, t) represents any reasonable measure of the contaminant
at station x such as the mid-channel value which we use herein. This
generalised Taylor model reappears in the equivalent pde (18) to the
discretisation (15) derived in §4.
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Figure 2: The discretisation of the 2D channel into rectangular
elements. The jth element is centred upon the grid point xj.

2 Divide the domain into elements

We divide the physical domain into m elements. Artificial bound-
aries are applied between elements to isolate each from its neigh-
bours and centre manifold theory is applied as discussed in §3.
Rosencrans [11] analogously divided a periodically varying chan-
nel into elements in order to use multiple scales to derive a Taylor
model for the large scale dispersion. Here, the isolating internal
boundaries are later removed in the analysis to form the relevant
discretisation.

Here we divide domain into rectangular elements of longitudinal
size h and extending across the whole channel, −1 < y < 1 as
illustrated in Figure 2. We place grid points, xj = jh and yj = 0,
at the centre of these elements. Other shaped elements are also
possible, but we only consider rectangular elements herein. We then
apply the following internal boundary conditions (ibcs) to each of
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the elements

cj(xj+1, y, t) = (1− γ)cj(xj, y, t) + γcj+1(xj+1, y, t), (7)

cj(xj−1, y, t) = (1− γ)cj(xj, y, t) + γcj−1(xj−1, y, t), (8)

except for the elements immediately adjacent to the physical ex-
treme upstream and downstream boundaries at the inlet and the
outlet as discussed in §4. In 1D these ibcs ensure consistency [10]
and here are straightforwardly extended to 2D. Important features
of the internal boundary conditions are that: when evaluated at
γ = 0 the elements are effectively isolated from each other, provid-
ing the basis for the application of centre manifold theory; whereas
when evaluated at γ = 1 the continuity in the concentration field
between elements is effectively restored and the resulting discreti-
sation models the original advection-diffusion dynamics throughout
the channel.

The parameter γ is an interelement coupling parameter. It con-
trols the flow of information between adjacent elements: if only
γ terms are retained in the asymptotic expansions then each ele-
ment is coupled with the adjacent element on the left and right; if
γ2 terms are retained then each element is coupled with the nearest
two elements on the left and right; and so on.

3 Centre manifold theory underpins

the analysis

Centre manifold theory provides sound theoretical support for the
discretisation. We develop the application of the theory from that
introduced in [8] for the one dimensional Burgers’ equation and
extended to two dimensions in [4].
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The approach is based upon a linear picture of the dynamics.
We begin by the mathematical trick of formally adjoining the dy-
namically trivial equations

∂γ

∂t
=
∂P
∂t

= 0 (9)

to the advection-diffusion equation (1), side boundary condition (5)
and the internal boundary condition (7–8). The introduction of (9)
allows us to treat all terms multiplied by γ or P as “nonlinear”
pertubations. With the isolating boundaries, (7–8) with γ = 0,
around each element the “linear” dynamics, namely the diffusion
equation

∂c

∂t
= ∇ ·

(
(1− y2)∇c

)
such that c(xj±1, y, t) = c(xj, y, t) ,

(10)
as P = 0, result in the concentration of contaminant in each el-
ement evolving exponentially quickly to a constant value in each
element. This is a set of fixed points in the extended state space
(c(x, y), γ,P) . We then use series expansions in the nonlinear pa-
rameters γ and P to perturb this fixed point to account for cou-
pling between the elements (non-zero γ) and downstream advection
(non-zero P). By theory [2, p281], since (10) has m zero eigenvalues
and (9) has two, there exists an m+ 2 dimensional centre manifold.

The centre manifold is parametrized by γ,P and a measure of c
in each element—we choose the grid value

cj = c(xj, 0, t) . (11)

This centre manifold M and the evolution thereon is

c(x, y, t) = v(x, y; c, γ,P) such that ċj = gj(c, γ,P) , (12)

where c denotes the vector of m grid values cj . The evolution
equation (12), evaluated at γ = 1 , gives a discrete model for the
advection-diffusion in the channel.
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The advantage of using modern dynamical systems theory to
develop such finite difference approximations is the sound theoret-
ical support for the method. As well as existence, centre manifold
theory assures:

• the relevance of the m + 2 dimensional dynamics, through
exponentially quick decay toM [2], as an accurate and stable
model of the original advection-diffusion dynamics at finite
grid size h;

• and that we may approximate the shape of the centre mani-
fold and the evolution thereon by approximately solving the
associated pde (13) obtained by substituting (12) into (1) [2].

While centre manifold theory guarantees useful properties in the
neighbourhood of the fixed points in (c(x, y), γ,P) space, we must
evaluate the model (12) at γ = 1 . However, the good properties
that have been observed in applications of this technique [10, 8, 9, 3,
4] such as consistency, increased accuracy and stability for certain
regions of the nonlinear parameters, suggest that γ = 1 is within the
useful neighbourhood of the origin. Further, in this application the
Taylor model (2) for the shear dispersion appears in our numerical
model.

4 Shear dispersion appears with a low

order approximation

To develop the centre manifold model for the contaminant disper-
sion in a channel we substitute (12) into the advection-diffusion
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equation (1) and solve the following resultant pde

∂c

∂t
=
∑
j

∂v

∂cj
gj = ∇ ·

(
(1− y2)∇v

)
− P 3

2
(1− y2)∂v

∂x
. (13)

We use computer algebra to handle the algebraic details of con-
structing the manifold and evolution on the manifold. The basic
algorithm introduced by Roberts in [7, 8] iterates to drive the resid-
uals of the governing equation (1), the side channel condition (5)
and the boundary conditions (7–8) to zero.1 In each iteration, we
solve a problem of the form

∇ ·
(
(1− y2)∇v′

)
= g′ + residual (14)

for updates g′ and v′ to the subgrid scale structure of the concen-
tration. Generally these subgrid problems have to be solved numer-
ically, but for this particular choice of κ(y) and u(y) these are all
done algebraically.

We visualize the centre manifold in an element by ploting the
field for specific values of cj. Figure 3 shows an example of the
field c in the channel with c0 = 1 and cj = 0 for j 6= 0 . The field
models the downstream advection into neighbouring elements and
the interaction with diffusion. The subgrid scale field constructed
by this holistic technique is comprised of actual solutions to the
advection-diffusion dynamics while also accounting for the evolution
of the grid values.

Executing the computer algebra to construct a discretisation
and retaining up to quadratic terms in the coupling γ and the Peclet
number P , the numerical model for the shear dispersion in a channel

1The reduce computer algebra code is available from the authors upon
request.
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Figure 3: Plot of the two-dimensional field c(x, y) from M with
errors O(γ3,P3), in the jth element when c0 = 1 , c±1 = c±2 = 0 ,
and γ = P = 1 .

is

∂cj
∂t

=
2

3
h−2

(
γδ2 − γ2

12
δ4
)
cj + (γ − γ2)P

2

8
δ2cj + γ2

P2

30
h−2δ2cj

− Ph−1
(
γµδ − γ2

6
µδ3

)
cj − γ2

2P
45
h−3µδ3cj

+ γ2
(

2

135
+
P2h2

72
− P

2h4

20

)
h−4δ4cj +O

(
P3, γ3

)
. (15)

This model is written in terms of centred difference and mean op-
erators, δcj = cj+1/2 − cj−1/2 and µcj =

(
cj+1/2 + cj−1/2

)
/2 respec-

tively. To discuss the discretisation relevant to the original pde we
evaluate the numerical model at γ = 1 — observe in (15) that

• the first term on the right-hand side is an O (h4) estimate of
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the mean longitudinal molecular diffusion

κ̄
∂2c

∂x2
; (16)

• the second term, if truncated to errors O (γ2), would stablise
the discretisation for large advection velocities P2, but here
disappears when truncated to errors O (γ3);

• the third term gives the shear dispersion term

D
∂2c

∂x2
for D =

P2

30
, (17)

as appears in the generalised Taylor model (6);

• whereas the fourth term (the first on the second line above) is
an O (h4) estimate of the longitudinal advection at the mean
velocity P ;

• the fifth term is the first contribution to the skewness of solu-
tions as seen in the corresponding term in (6);

• and lastly, the sixth term contributes to the kurtosis.

The equivalent pde for the low order holistic discretisation (15) is

∂c

∂t
= −P ∂c

∂x
+

(
2

3
+
P2

30

)
∂2c

∂x2
− 2P

45

∂3c

∂x3
+

2

135

∂4c

∂x4
+O(h2) , (18)

The first two terms from this equivalent pde are precisely the first
two terms in the generalised Taylor model (6). The higher order
terms are also components of the higher order generalised Taylor
model; presumably higher order terms in the interelement coupling
parameter γ will complete the higher order terms. But see that the
vitally important shear dispersion term appears as a γ2P2 term.
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In the interesting regime of large Peclet number,

∂cj
∂t

≈ · · · +

(
P2h2

72
− P

2h4

20

)
h−4δ4cj , (19)

this last term is stablising only when the grid spacing h is not too
small: h2 ≥ 5/18 . As is usual in coarse descriptions of shear dis-
persion [14, 5, e.g.] we cannot model structures which are too small
in the longitudinal direction. Even though the equivalent pde (18)
is not stable for small h, interestingly this holistic model is stable
for finite h.

5 Inlet and outlet boundary conditions

are easily incorporated

A great advantage of using this holistic technique to discretisation
is that inlet and outlet boundary conditions are appropriately and
easily incorporated into the analysis. Introduce a Dirichlet inlet
boundary condition of prescribed concentration and the Neumann
zero diffusive flux outlet boundary condition as shown in Figure 4.
Here we construct discretisations to be used for the elements near
the inlet and outlet.

We follow a similar treatment of the physical boundaries as in-
troduced in [9]. We apply the Dirichlet inlet boundary condition at
a grid point, say

c(x0, y, t) = a(t) . (20)

This may be viewed as making the first element a little longer as
seen in Figure 5. We apply the Neumann outlet boundary condition
at the right hand edge of the right most element, say

∂c

∂x
= 0 at x = xm + h/2 , (21)
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Figure 4: The fixed upstream boundary condition and the zero
diffusive flux downstream boundary condition
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Figure 5: The physical boundary conditions are applied to the left
hand side of the first element and the right hand side of the last
element

as shown in Figure 5. Here we restrict attention to inlet and outlet
conditions which are constant across the channel as the analysis can
be done algebraically; more general inlet conditions appear to need
numerical solutions for the subgrid problem.

To apply centre manifold theory, rewrite (20) in the form anal-
ogous to the ibc (7)

c1(x0, y, t)− c1(x1, y, t) = γ(c1(x0, y, t)− a(t)) at x = x0 , (22)

and use (21) directly. The arguments of §3 still apply to ensure
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theoretical support for the numerical model. The construction of
the discretisation then proceeds as before but with special treatment
of elements near the inlet or outlet. After constructing the model
with O(γ3,P3) errors and setting the coupling parameter γ = 1 , we
find the discretisations to be used near the inlet and outlet are

∂c1
∂t

=
1

18h2
(−c3 + 16c2 − 29c1 + 14a) +

P
12h

(c3 − 8c2 + 7a)

+
1

135h4
(2c3 − 8c2 + 10c1 − 4a) +

P
45h3

(−c3 + 2c2 − a)

+
P2

80
(−4c3 + 16c2 − 25c1 + 13a)

+
P2

360h2
(5c3 − 8c2 + 7c1 − 4a) +O(P3, ȧ) , (23)

∂c2
∂t

=
1

18h2
(−c4 + 16c3 − 30c2 + 16c1 − a)

+
P

12h
(c4 − 8c3 + 8c1 − a)

+
1

135h4
(2c4 − 8c3 + 12c2 − 8c1 + 2a)

+
P

45h3
(−c4 + 2c3 − 2c1 + a)

+
P2

20
(−c4 + 4c3 − 6c2 + 4c1 − a)

+
P2

360h2
(5c4 − 8c3 + 6c2 − 8c1 + 5a) +O(P3, ȧ) ,(24)

∂cm−1
∂t

=
1

18h2
(15cm − 30cm−1 + 16cm−2 − cm−3)

+
P

288h
(−167cm − cm−1 + 192cm−2 − 24cm−3)

+
1

135h4
(−6cm + 12cm−1 − 8cm−2 + 2cm−3)
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+
P

1080h3
(23cm + cm−1 − 48cm−2 + 24cm−3)

+
P2

23040
(3401cm − 6857cm−1 + 4608cm−2 − 1152cm−3)

+
P2

17280h2
(−133cm + 277cm−1 − 384cm−2 + 240cm−3)

+O(P3) , (25)

∂cm
∂t

=
1

18h2
(−14cm + 15cm−1 − cm−2)

+
P

1440h
(−937cm + 1073cm−1 − 136cm−2)

+
1

135h4
(4cm − 6cm−1 + 2cm−2)

+
P

1080h3
(27cm − 52cm−1 + 25cm−2)

+
P2

2560
(−431cm + 580cm−1 − 149cm−2)

+
P2

17280h2
(208cm − 461cm−1 + 253cm−2)

+O(P3) . (26)

Numerical experiments using (15) and (23–26) have shown good
agreement with numerical solutions of the Taylor model, but a more
complete comparison awaits further research.

6 Conclusion

Centre manifold theory provides a powerful new approach to de-
riving finite difference models of dynamical systems. This applica-
tion of the holistic technique provides a direct link between the 2D
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advection-diffusion dynamics (1) and the 1D numerical model (15).
The one dimensional holistic discretisation was derived from the
original 2D equations without first deriving a 1D continuum model
such as the Taylor model. We also found the shear dispersion term
appears in the holistic discretisation in the low order approxima-
tion (15). Physical boundary conditions are also easily incorporated
into the analysis.

To extend this work we must analyse boundary conditions that
vary across the channel and in time. This requires numerical con-
struction of the subgrid scale field in each element and is the subject
of further research.
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