
ANZIAM J. 44 (E) ppC569–C589, 2003 C569

Integro-differential closure equations for
inhomogeneous turbulence
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Abstract

We present numerical and computational techniques to
solve systems of integro-differential closure equations for in-
homogeneous two-dimensional turbulent flow. The closure
equations, representing the first tractable closure theory for
inhomogeneous flow over mean (single realization) topog-
raphy, are based on a quasi-diagonal direct interaction ap-
proximation derived via renormalization techniques. The
equations are computationally challenging due to the poten-
tially long time history integrals. In order to reduce the
computational cost we have implemented a formal restart
procedure for the two and three point cumulant terms. The
restart procedure is shown to be in good agreement with the
closure without restarts and results are compared to direct
numerical simulation of the barotropic vorticity equation.
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1 Introduction

In this paper, we describe the numerical implementation of the
quasi-diagonal direct interaction approximation (qdia) closure the-
ory of Frederiksen [1]. The qdia closure is the first tractable closure
theory for general inhomogeneous flow over mean (single realization)
topography. It was formulated with the aim of establishing a general
expression for the eddy-topographic force which parametrizes the in-
teraction between retained scale topography with subgrid-scale ed-
dies. The importance of parameterizing the eddy-topographic force
for obtaining realistic ocean circulations has been shown by Hol-
loway [2], but a rigorous theory of the parametrization had been
lacking prior to the development of the qdia closure theory.
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Here we implement the qdia closure and compare its perfor-
mance with the statistics of ensemble averaged direct numerical
simulations (dns) for two-dimensional Navier-Stokes flows over to-
pography. The qdia closure incorporates prognostic equations for
the mean vorticity, for the vorticity covariance and for response
functions. Both the closure and dns are formulated for flows on the
doubly periodic domain and in this article we focus on low-order
truncations of the equations. The qdia consists of a set of integro-
differential closure equations with potentially long time-history in-
tegrals that can result in a large computational task for long inte-
grations.

We also present a variant of the qdia closure which has simi-
lar accuracy to the qdia but which is computationally much more
efficient. This variant, termed the cumulant update quasi-diagonal
direct interaction approximation (cuqdia), overcomes the problem
of the long time-history integrals by periodically truncating them,
calculating both the two- and three-point cumulants and then uses
these as new non-Gaussian initial conditions for subsequent integra-
tions. Our method is a generalization of a cumulant update scheme
for the homogeneous dia closure proposed by Rose [3] and applied
to a three component problem in plasma physics. It has also been
extensively applied to non-Markovian closures for two-dimensional
isotropic turbulence by Frederiksen et al. [4] and Frederiksen and
Davies [5].

The qdia closure, which is based on renormalized-perturbation
theory, preserves conservation of kinetic energy and potential en-
strophy and guarantees realizability for the diagonal elements of
the covariance matrices. Here we compare the performance of the
qdia and cuqdia closures with dns for forced dissipative flows over
topography in 20 day simulations; we employ typical meteorological
space and time scales in our numerical experiments.
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We present the equations for two-dimensional barotropic flow
over topography on an f -plane and for doubly periodic boundary
conditions in Section 2. The quasi-diagonal direct interaction equa-
tions, with cumulant update restarts are summarized in Section 3.
Section 4 shows that we only need to include the 2- and 3-point
cumulants in the restart procedure to be consistent with the ap-
proximations in the qdia closure. The numerical methods used
to solve the cuqdia closure and dns equations are summarized in
Section 5 while in Section 6 we compare the performance of the
qdia and cuqdia closures with dns for forced dissipative flows
over topography. The conclusions are presented in Section 7, and
the Appendix A formulates the expression for the 2-point restart
terms.

2 Two-dimensional flow over

topography

The evolution equation for two-dimensional flow over a fixed topog-
raphy on a periodic f -plane (0 ≤ x, y ≤ 2π) is the non-dimensional
barotropic vorticity equation

∂ζ

∂t
= −J(ψ, ζ + h) + ν0O

2ζ + f 0 , (1)

where f 0 and ν0 are the bare forcing and bare viscosity respectively.
The vorticity is given in terms of the stream function

ζ = O2ψ . (2)

We write (1) in spectral form via

ζ(x, t) =
∑
k

ζk(t) exp ik · x , (3)
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where

ζk(t) =
1

(2π)2

∫ 2π

0

d2x ζ(x, t) exp(−ik · x) , (4)

and x = (x, y), k = (kx, ky) . The spectral vorticity equation is(
∂

∂t
+ ν0(k)k

2

)
ζk(t) =

∑
p

∑
q

δ(k + p + q)

× [K(k,p,q)ζ−pζ−q + A(k,p,q)ζ−ph−q] + f 0
k , (5)

where k = (k2
x + k2

y)
1/2 and ζ−k = ζ∗k are conjugate.

The interaction coefficients are governed by the following rela-
tionships

A(k,p,q) = −(pxqy − pyqx)/p
2 , (6)

K(k,p,q) =
1

2
[A(k,p,q) + A(k,q,p)]

=
1

2
(pxqy − pyqx)(p

2 − q2)/p2q2 , (7)

where

K(k,p,q) +K(p,q,k) +K(q,k,p) = 0 . (8)

Also δ is the Kronecker delta function.

For an ensemble of flows satisfying (5) we express the vorticity
for a given realization in terms of the ensemble mean 〈ζk〉 and the
deviation from the ensemble mean ζ̂k :

ζk = 〈ζk〉+ ζ̂k . (9)
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Hence we write these equations for the ensemble mean(
∂

∂t
+ ν0(k)k

2

)
〈ζk〉

=
∑
p

∑
q

δ(k + p + q)K(k,p,q) [〈ζ−p〉〈ζ−q〉+ C−p−q(t, t)]

+
∑
p

∑
q

δ(k + p + q)A(k,p,q)〈ζ−p〉h−q + 〈f 0
k〉 (10)

and the deviation(
∂

∂t
+ ν0(k)k

2

)
ζ̂k

=
∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
〈ζ−p〉ζ̂−q

+ ζ̂−p〈ζ−q〉+ ζ̂−pζ̂−q − C−p−q(t, t)
]

+
∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂−ph−q + f̂ 0
k , (11)

with f 0
k = 〈f 0

k〉 + f̂ 0
k and the single time cumulant in (10) and (11)

determined by

C−p−q(t, s) = 〈ζ̂−p(t)ζ̂−q(s)〉 . (12)

3 CUQDIA closure equations

The derivation of the closure equations, without restarts, can be
found in Frederiksen [1] and we therefore only present a summary
of the results here. In order to obtain the closure equations the vor-
ticity is expanded in a perturbation series to find the zeroth order
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and first order terms. We write the solution to the first order equa-
tion for ζ̂

(1)
k in terms of the response or Greens function R

(0)
k (t, s) ,

and express the 2-time cumulant to first order.

We assume that the initial ζ̂
(1)
k (t0) have a multivariate Gaussian

distribution so that the initial covariance matrix is diagonal. As
well, we suppose that the off-diagonal elements of the 2-time co-
variance and response function matrices are small compared to the
diagonal elements. After renormalization [1] we find that the off-
diagonal 2-point cumulant is written in terms of diagonal cumulant
and response functions:

Ck−l(t, t́) =

∫ t

t0

ds Rkk(t, s)Cl−l(s, t́)

× [A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]

+

∫ t́

t0

ds R−l−l(t́, s)Ck−k(t, s)

× [A(−l,k, l− k)h(k−l) + 2K(−l,k, l− k)〈ζ(k−l)(s)〉] .(13)

In a similar way, the off-diagonal response function

Rkl(t, t́) =

∫ t

t́

ds Rkk(t, s)Rll(s, t́)

× [A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉] .(14)

The end result of this procedure is the determination of the single
time cumulant and the diagonal 2-time cumulant. Hence, from (10)
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we write equations for the mean-field(
∂

∂t
+ ν0(k)k

2

)
〈ζk〉 =

∑
p

∑
q

δ(k + p + q)

× [K(k,p,q)〈ζ−p(t)〉〈ζ−q(t)〉+ A(k,p,q)〈ζ−p(t)〉h−q

+K(k,p,q)K̃
(2)
−p,−q(0, 0)R−p(t, 0)R−q(t, 0)]

−
∫ t

t0

ds ηk(t, s)〈ζk(s)〉+ hk

∫ t

t0

ds χk(t, s) + 〈f 0
k〉 , (15)

where the nonlinear damping rate

ηk(t, s) = −4
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×K(−p,−q,−k)R−p(t, s)C−q(t, s) , (16)

and

χk(t, s) = 2
∑
p

∑
q

δ(k + p + q)K(k,p,q)

× A(−p,−q,−k)R−p(t, s)C−q(t, s) . (17)

From (11), see that the 2-time cumulant satisfies(
∂

∂t
+ ν0(k)k

2

)
Ck(t, t́)

=

∫ t́

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t́, s)

−
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t́, s)

+
∑
p

∑
q

δ(k + p + q)
{
K(k,p,q)K̃

(3)
−q,−p,−k(0, 0, 0)

×R−q(t, 0)R−p(t, 0)R−k(t́, 0) + [2K(k,p,q)〈ζ−q(t)〉

+A(k,p,q)h−q] K̃
(2)
−p,−k(0, 0)R−p(t, 0)R−k(t́, 0)

}
,(18)
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where we have employed the abbreviations

Rk(t, t
′) ≡ Rkk(t, t

′) , (19)

Ck(t, t
′) ≡ Ck−k(t, t

′) . (20)

Here the bare noise is assumed to be white:

F 0
k(t, s) = 〈f̂ 0

k(t)f̂ 0∗
k (s)〉 = F 0

k(t)δ(t− s) , (21)

where δ is the Dirac delta function and S is the nonlinear noise

Sk(t, s) = 2
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×K(−k,−p,−q)C−p(t, s)C−q(t, s) . (22)

The P and π terms represent the inhomogeneous terms via coupling
to the topography and mean-field

Pk(t, s) =
∑
p

∑
q

δ(k + p + q)C−p(t, s)

× [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [2K(−k,−p,−q)〈ζq(s)〉+ A(−k,−p,−q)hq] , (23)

πk(t, s) = −
∑
p

∑
q

δ(k + p + q)R−p(t, s)

× [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [2K(−p,−k,−q)〈ζq(s)〉+ A(−p,−k,−q)hq] . (24)

The restart terms are calculated at time t = t́ = T through the
relationships

K̃
(2)
−p,−k(T, T ) = K

(2)Dyn
−p,−k (T, T )

+ K̃
(2)
−p,−k(0, 0)R−p(T, 0)R−k(T, 0) , (25)

K̃
(3)
−q,−p,−k(T, T, T ) = K

(3)Dyn
−q,−p,−k(T, T, T )

+ K̃
(3)
−q,−p,−k(0, 0, 0)R−q(T, 0)R−p(T, 0)R−k(T, 0) , (26)
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where

K
(2)Dyn
−p,−k (t, t́)

=

∫ t

t0

dsR−p(t, s)C−k(t́, s)
[
A(−p,−k,k + p)h(−k−p)

+ 2K(−p,−k,k + p)〈ζ(−k−p)(s)〉
]

+

∫ t́

t0

dsR−k(t́, s)C−p(t, s)
[
A(−k,−p,k + p)h(−k−p)

+ 2K(−k,−p,k + p)〈ζ(−k−p)(s)〉
]
, (27)

and ∑
p

∑
q

δ(k + p + q)K(k,p,q)K
(3)Dyn
−q,−p,−k(t, t, t́)

=

∫ t́

t0

ds Sk(t, s)R−k(t́, s)−
∫ t

t0

ds ηk(t, s)C−k(t́, s) . (28)

The single time cumulant arises due to the fact that

∂Ck(t, t)

∂t
= lim

t́→t

(
∂Ck(t, t́)

∂t
+
∂Ck(t, t́)

∂t́

)
, (29)

and Ck(t, t́) = Ck(t́, t) where for t > t́ we have Rk(t, t́) = 0 . Thus
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the single time cumulant satisfies the equation(
∂

∂t
+ 2ν0(k)k

2

)
Ck(t, t)

= 2Re

∫ t

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t, s)

− 2Re

∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t, s)

+ 2Re
∑
p

∑
q

δ(k + p + q)
{
K(k,p,q)K̃

(3)
−q,−p,−k(0, 0, 0)

×R−q(t, 0)R−p(t, 0)R−k(t, 0) + [2K(k,p,q)〈ζ−q(t)〉

+ A(k,p,q)h−q] K̃
(2)
−p,−k(0, 0)R−p(t, 0)R−k(t, 0)

}
. (30)

The equation for the response function takes a similar form:(
∂

∂t
+ ν0(k)k

2

)
Rk(t, t́)

= −
∫ t

t́

ds [ηk(t, s) + πk(t, s)]Rk(s, t́) (31)

with Rk(t, t) = 1 . As we consider only white noise forcing, restart
terms are not required for the propagator R, (31). This would not
be the case for coloured noise.

4 Restart terms

The qdia, like other non-Markovian closure theories, may be com-
putationally expensive for long time integrations because of the
time-history integrals which need to be evaluated between the initial
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and final times. The cumulant update restart procedure consists of
integrating the qdia forward for a time, calculating the 2- and 3-
point terms at this time and then using these in the new initial con-
ditions for further integration. In principle, knowledge of all higher
order cumulants should be available, but to be consistent with the
approximations of the qdia only the 2- and 3-point cumulants are
needed.

The 3-point cumulant is effectively the homogeneous component
of the closure equations, whereas the 2-point terms arise due to the
inhomogeneity produced by the presence of topography and mean
field. Thus we write the tendency of the 2-time cumulant as being
composed of 2- and 3-point terms:(

∂

∂t
+ ν0(k)k

2

)
Ck(t, t́)

=
∑
p

∑
q

δ(k + p + q)A(k,p,q)C−p−k(t, t́)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
〈ζ−p(t)〉C−q−k(t, t́)

+ C−p−k(t, t́)〈ζ−q(t)〉+ 〈ζ̂−p(t)ζ̂−q(t)ζ̂−k(t́)〉
]

+

∫ t́

t0

ds F 0
k(t, s)R−k(t́, s) , (32)

where we define the 2-point cumulant

Ck−p(t, t́) = 〈ζ̂−k(t)ζ̂−p(t́)〉 , (33)

and 3-point cumulant

〈ζ̂−k(t)ζ̂−p(t)ζ̂−q(t́)〉 , (34)

respectively.
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If we follow the argument of Rose [3] and suppose that the initial
2- and 3-point cumulants are non-zero then we are confronted with
the in principle non-vanishing of other higher order cumulants (≥ 3).
These higher order cumulants arise due to the nonlinearity in the
expansion parameter λ (see equation (40)). To see this consider the
inhomogeneous dia(

∂

∂t
+ ν0(k)k

2

)
Ck(t, t́) =∫ t́

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k(t, s)
]
R−k(t́, s)

−
∫ t

t0

ds [ηk(t, s) + πk(t, s)]C−k(t́, s) . (35)

When ζk(0) is Gaussian we write the nonlinear noise Sk, nonlinear
damping ηk and inhomogeneous contributions, Pk and πk (which are
composed of ηp, ηq, χp and χq terms, while the evolution equation
for 〈ζk〉 consists of ηk, χk components) as a power series in λ, that
is,

S = αnλ
n, η = βnλ

n , P = γnλ
n π = σnλ

n , n = 2, 3, . . . ,(36)

where αn, βn, γn and σn consist of finite products of R and C.
It is the dependence of these terms on the exact R and C that
constitutes a propagator renormalised expansion, where the dia is
truncated at O(λ2) .

See that for non-vanishing 2- and 3-point cumulants, (36) con-
vert to multiple power series in λ and all non-vanishing initial cu-
mulants. Hence in order to be consistent with the approxima-
tions of the dia we need only consider the 2- and 3-point cumu-
lants. Thus the inhomogeneous cumulant update dia equations are
those in the preceding section, where we integrate up to some time
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t = t́ = T and calculate the 2- and 3-point cumulants through the re-
lations (25–28). The procedure is repeated as often as needed simply
by replacing K̃2

−p,−k(0, 0) and K̃3
−q,−p,−k(0, 0, 0) with the quantities

K̃2
−p,−k(T, T ) and K̃3

−q,−p,−k(T, T, T ) .

5 Numerical methods

The numerical approach that we have followed mirrors that of the
original work of Kraichnan [6] and subsequently used for investi-
gations of homogeneous closure theories [4, 5, 7, 8]. The forward
time step is achieved via a predictor-corrector scheme while the
time-history integrals in the cumulant and mean-field equations are
discretized by the trapezoidal rule. The truncation in wavenumber
is to k = 3 which, although severe, still allows sufficient degrees of
freedom so that the system is mixing [9]. In the second order closure
considered, three interacting simple shear waves result in the gener-
ation of triads in wavenumber space as evident in (8). The closure
and dns models are formulated for discrete spectra on the doubly
periodic domain and run over the whole wavenumber space allowing
unambiguous comparison. Further efficiency is gained by running
over the half-space and invoking conjugacy thereby reducing the
number of interaction coefficients by half and gaining a doubling
in computational speed. The k = 3 case presented (see Figure 1)
has 28 components which due to degeneracy reduce to six distinct
2-point cumulant values within the closures. We also have four sets
of 360 non-zero interaction coefficients to be summed over which for
increasing time represents a distinct computational challenge even
when employing the restart procedure.
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6 Comparison of QDIA and CUQDIA

with DNS

We have employed typical meteorological time and space scales with
a length scale of a/2, where a = 6.37122×106 m is the earth’s radius
and a time scale (

√
2Ω)−1, where Ω = 7.292×10−5 s−1 is the earth’s

angular velocity. The non-dimensional time step used is 1.1136 cor-
responding to 1/8th days, while the more general ν0(k) is replaced
by ν̂ = 1.8579× 10−2 the nondimensional viscosity coefficient. The
variance of the white noise forcing and mean-field forcing are derived
by canonical equilibrium theory and are

F 0
k = 2ν̂0(k)k

2Ceq
k , (37)

〈ζeq
k 〉 = −b2hkC

eq
k , (38)

where

Ceq
k =

k2

a2 + b2k2
, (39)

thus the closures are forced to asymptote to the equilibrium solution.
In Figures 1 and 2 we have chosen a2 = −5.969 × 105 and b2 =
7.444× 105 with a1 = 4.842× 104 and b1 = 2.511× 103 used in the
generation of the initial Ck(0, 0) . The mean-field is initially zero
and is “spun up” via the interaction of the fluctuating field and
the topography which is chosen so that at equilibrium the mean
and fluctuating fields are of equal magnitude. The initial Ck(0, 0) is
chosen in order to ensure non-trivial behaviour in the early period of
evolution. The dns results represent an average of 5000 realizations
whose initial conditions at t = 0 have real and imaginary parts with
a joint Gaussian distribution. The cuqdia results are for restarts
at t = t́ = T = 20δt and demonstrate excellent agreement with
the qdia results (up to 6 significant figures). Note: at equilibrium
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Figure 1: A comparison of qdia and cuqdia results with restarts
every t = t́ = T = 20δt . The parameters are detailed in Figure 2.
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Figure 2: A comparison of qdia and dns results for the total
fields: ν̂ = 1.8579 × 10−2 ; Ceq

k = k2

a2+b2k2 ; initial twice enstrophies

Ck(0, 0) = 10−2 × k2

a1+b1k2 , where C(2,1) = 2.7622 × 10−4 ; twice

enstrophies forcing F 0
k = 2ν̂k2Ceq

k ; topographic amplitude squared

|hk|2 = a2+b2k2

b22k2 ; 〈ζeq
k 〉 = −b2hkC

eq
k ; initial mean-field 〈ζk(0)〉 = 0 ;

mean-field forcing 〈f 0
k〉 = ν̂k2〈ζeq

k 〉 ; a1 = 4.842× 104 ; b1 = 2.511×
103 ; a2 = −5.969× 105 ; b2 = 7.444× 105 ; δt = 1/8 days
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the integral terms of the closure vanish and the restart becomes
exact. The comparison of the total field with dns (5000 realizations)
also shows close agreement apart from slight variation in the regime
where transients are dominant as is standard for dia [6, 7, 8] based
closures. The reduction in computational cost is great with the qdia
calculation taking several hours on a Cray J90 while the similar
cuqdia finished in only a few minutes. Finally, note that due to
degeneracy only the first six modes need be presented in Figures 1
and 2.

7 Conclusion

We have presented results for a tractable closure theory for inhomo-
geneous flow over mean topography with and without non-Gaussian
restarts. The model has been shown to be in good agreement with
dns calculations. The restart calculation has been shown to dra-
matically reduce the computational cost of the calculation while
again showing close agreement to both dns and qdia results. In
future studies we plan to examine the performance of the qdia and
cuqdia closures at higher resolution.
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A 2-point restart terms

Suppose we expand ζk in a perturbation series

ζk(t) = ζ0
k(t) + λζ1

k(t) + · · · . (40)

To zeroth order we have from (5)(
∂

∂t
+ ν0(k)k

2

)
ζ̂0
k(t) = f̂ 0

k(t) + δ(t− t0)ζ̂
0
k(t0) , (41)

with solution

ζ̂0
k(t) = Rk(t, t0)ζ̂

0
k(t0) +

∫ t

t0

ds R0
k(t, s)f̂

0
k(s) . (42)

To order λ we have(
∂

∂t
+ ν0(k)k

2

)
ζ̂1
k =

∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂0
−ph−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
〈ζ−p〉ζ̂0

−q + 〈ζ−q〉ζ̂0
−p

+ ζ̂0
−pζ̂

0
−q − 〈ζ̂0

−pζ̂
0
−q〉

]
+ δ(t− t0)ζ̂

1
k(t0) . (43)

Thus

ζ̂1
k(t) = ζ̂

1(Dyn)
k (t) +R0

k(t, t0)ζ̂
1
k(t0) , (44)

where

ζ̂
1(Dyn)
k (t) =

∫ t

t0

dsR0
k(t, s)

×

{∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂0
−p(s)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)
[
〈ζ−p(s)〉ζ̂0

−q(s)

+ 〈ζ−q(s)〉ζ̂0
−p(s) + ζ̂0

−p(s)ζ̂0
−q(s)− 〈ζ̂0

−p(s)ζ̂0
−q(s)〉

]}
.(45)
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Finally

C1
k−l(t, t́) = 〈ζ̂1(Dyn)

k (t)ζ̂0
−l(t́)〉+ 〈ζ̂0

k(t)ζ̂
1(Dyn)
−l (t́)〉

+R0
k(t, t0)〈ζ̂1

k(t0)ζ̂
0
−l(t́)〉+R0

−l(t́, t0)〈ζ̂0
k(t)ζ̂

1
−l(t0)〉

= 〈ζ̂1(Dyn)
k (t)ζ̂0

−l(t́)〉+ 〈ζ̂0
k(t)ζ̂

1(Dyn)
−l (t́)〉

+R0
k(t, t0)R

0
−l(t́, t0)〈ζ̂1

k(t0)ζ̂
0
−l(t0)〉

+R0
k(t, t0)R

0
−l(t́, t0)〈ζ̂0

k(t0)ζ̂
1
−l(t0)〉

= 〈ζ̂1(Dyn)
k (t)ζ̂0

−l(t́)〉+ 〈ζ̂0
k(t)ζ̂

1(Dyn)
−l (t́)〉

+R0
k(t, t0)R

0
−l(t́, t0)Ck−l(t0, t0) , (46)

where we have assumed that only the initial fields yield correlation
for off-diagonal elements. Thus the 2-point restart terms are those
given by (25) and (27).
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