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Nonparametric time dependent principal
components analysis.

T. Prvan∗ A. W. Bowman†
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Abstract

Principal Component Analysis (pca) is a popular data
reduction technique widely used in data mining. It is com-
mon to ignore any existing time component of the data
when performing pca. One way of incorporating this di-
mension is to perform pca for the data at each such point.
The disadvantage of this approach is that there may not be
enough data at each time point. We overcome this by us-
ing a smoothed covariance or correlation matrix and by the
choice of bandwidth we control the amount of neighbouring
data contributing to the calculation. Permutations are used
to construct reference bands to test whether there is a time
effect. If there is a time effect then performing pca as a
data reduction technique is inappropriate. Nonetheless the
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smoothed loadings of the principal components deemed to
account for most of the variation in the data may give one
insight into the structure of the data. The techniques are
illustrated using aircraft development data.
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1 Introduction

Principal Component Analysis (pca) is one of the best known ap-
proaches to data reduction. The original set of variables is processed
to produce a new and smaller set of variables designed to contain
as much information as possible. pca is a linear transformation
which locates directions of maximum variance in the original data
and rotates the data along these axes. The eigenvectors associated
with the ordered eigenvalues (largest to smallest) of the covariance
or correlation matrix give the loadings (coefficients) for each prin-
cipal component (pc). A correlation matrix is always used if the
variables are not all on the same scale otherwise a covariance matrix
can be used. Usually the first pc contains most of the information.
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pca is used widely in data mining as a data reduction technique.
Most data mining observations have a time component. If there is
a time component, it is reasonable to suspect that these sources of
variation vary over time. Our proposed nonparametric time depen-
dent pca should be able to detect whether this is the case. If there
is a time effect, then performing pca without taking this into ac-
count may not be ideal. pca would then be an inappropriate data
reduction technique.

Principal component analysis may also be used to detect struc-
ture in the relationships among variables. Again, if there is a time
component it is reasonable to suspect that the sources of variation
will vary over time. Changes in the loadings of the variables over
time reveal another dimension about the data.

The aim of this article is to introduce a method of nonparamet-
ric smoothing for time dependent pca, and to explore its role in
identifying sources of variation as well as their variation over time.
Smoothed covariance and correlation matrices are developed by gen-
eralising the parametric formulae to incorporate weights which in-
troduce the smoothing. The form of the estimators is discussed in
Section 2. Reference bands for testing whether there is a time effect
are proposed in Section 3. This is followed by further discussion in
Section 4.

2 Nonparametric time dependent PCA

Principal component analysis can be performed on either the covari-
ance or correlation matrix. In biology there is a preference for the
covariance matrix because the measurements being considered are
usually on the same scale. Besides identifying the sources of vari-
ation, interest lies in interpreting the principal components. When
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measurements are not in the same units, the correlation matrix
must be used. Now that the principal components are for stan-
dardized variables, the principal components may be less easy to
interpret directly (Jolliffe [5]). We now want to evaluate the covari-
ance or correlation matrix at time t. Suppose our data is of the
form (t1, x1), . . . , (tn, xn) where xi ∈ Rp. If the time t corresponds
to a data time point we could just calculate the sample covariance
or correlation matrix at this data point if we have more than one
observed vector of values. Our estimator for the covariance matrix
would be

S(t) =
1

(no. of ti = t)

∑
all ti=t

(xi − x(t))(xi − x(t))T

=
1

(no. of ti = t)
A(t) ,

where
A(t) =

∑
all ti=t

(xi − x(t))(xi − x(t))T .

The correlation matrix would be

R(t) = D(1/si(t))S(t)D(1/si(t))

= D(1/
√

aii(t))A(t)D(1/
√

aii(t)) ,

where D(.) denotes the diagonal matrix containing the reciprocals of
the standard deviations or the square roots of the diagonal elements
of A(t) .

What happens if t does not coincide with a data point? Accord-
ing to the above approach, we could not calculate the covariance
or correlation matrix. A way around this is to consider a weighted
average of observations in the neighbourhood of t, with those closer
to t contributing more to the calculation of the quantity of interest.
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That is,

Sw(t) =
1∑n

i=1 wi(t)

n∑
i=1

wi(t)(xi − xw(t))(xi − xw(t))T

=
1∑n

i=1 wi(t)
Aw(t) ,

where

Aw(t) =
n∑

i=1

wi(t)(xi − xw(t))(xi − xw(t))T ,

xw(t) =
1∑n

i=1 wi(t)

n∑
i=1

wi(t)xi ,

and
Rw(t) = D(1/

√
[Aw(t)]ii)Aw(t)D(1/

√
[Aw(t)]ii) .

We have used df =
∑n

i=1 wi(t) instead of df =
∑n

i=1 wi(t)− 1 in the
calculation of the weighted covariance matrix, because if the data
is sparse around the time point being considered, it is conceivable
that the sum of the weights could be less than 1 . This is not an
issue when working with smoothed correlation matrices since the df
cancel out. Normal kernels will be used as the weights with

wi(t) = w

(
ti − t

h

)
.

This centres a normal distribution with standard deviation h around
the point ti. The further t is from ti the less weight the point is given.
The bandwidth h, also known as the smoothing parameter, controls
the degree of smoothing applied to the data.

The nonparametric time dependent principal component analy-
sis technique then consists of performing pca at each time t consid-
ered for the smoothed covariance or correlation matrix. Typically
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Table 1: recorded aircraft information.

t - year of first manufacture
x1 - total engine power (kw)
x2 - wing span (metres)
x3 - length (metres)
x4 - maximum take-off weight (kg)
x5 - maximum speed (km/hr)
x6 - range (km)

this will be a uniformly dense grid in [t1, tn] . As in any smoothing
procedure, the choice of bandwidth h will have important effects
on the resultant estimator. For this reason, in the data set consid-
ered, different values of the bandwidth were used and a value chosen
subjectively from inspection of principal component loadings versus
time plots. Too big a bandwidth masks curvature in the data while
too small a bandwidth displays more sampling variation.

Example: Aircraft data

An aircraft data set will be used to illustrate nonparametric time
dependent pca. The progress of modern technology is very rapid
and it is an issue of current concern to develop ways of monitoring
trends in technology so that informed decisions can be taken by
government, commercial organisations or other bodies. To develop
such techniques it is sensible to begin with a simple example where
data can be obtained easily and where the technology itself is well
understood. A fuller description of the data on aircraft design can
be found in Bowman and Azzalini [1].

Seven pieces of information have been recorded on a wide variety
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of aircraft, and are listed in Table 1. We have n = 709 complete
sets of measurements for years 1914 through to 1984.

Since the scales are different for the six variables of interest, log-
arithms of the data have been taken. Figure 1 displays weighted
means for logarithms of the data, with logarithms of the data su-
perimposed. The bandwidth h = 7 was chosen after experimenting
with many different choices.

Figure 2 displays the results obtained from nonparametric time
dependent pca applied to the aircraft data using correlation matri-
ces since the six measurements are not all on the same scale. Recall
that principal component analysis is used to find the linear com-
binations of variables with large variance. The Proportions versus
Year of Manufacture plot displays the proportion of the total vari-
ability explained by each of the six pcs over time. From this plot
see that the first two pcs account for 70% to 75% of the total vari-
ability while the first three pcs account for 83% to 90% of the total
variability. Principal components loadings versus Year of Manufac-
ture (time) plots are used to detect structure in the relationships
between variables over time. The first pc has all its loadings posi-
tive even though they vary over time so pc1 is a weighted average
which varies over time. The loadings for the logarithm of maxi-
mum speed (log x5) are much smaller than the other loadings most
of the time so we conclude that maximum speed has a negligible
contribution to variability. pc2 always has the logarithm of total
engine power (log x1) and logarithm of maximum speed (log x5)
with positive loadings and logarithm of of wingspan (log x2) with
negative loadings so we conclude that pc2 always has total engine
power and maximum speed contrasting with wingspan. The other
variables’ loadings change sign over time and their absolute values
are smaller so they contribute much less to variability. pc3 has the
logarithm of range (log x6) loading over time always being much
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Figure 1: Smoothed means of logarithms of Aircraft data. The
bandwidth h = 7 was used. (a) Weighted mean of logarithm of
total engine power (kw) versus Year of Manufacture. (b) Weighted
mean of logarithm of wing span (m) versus Year of Manufacture.
(c) Weighted mean of logarithmm of length (m) versus Year of Man-
ufacture. (d) Weighted mean of logarithm of take off weight (kg)
versus Year of Manufacturer. (e) Weighted mean of logarithm of
maximum speed (km/hr) versus Year of Manufacture. (f) Weighted
mean of logarithm of range (km) versus Year of Manufacture.
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Figure 2: Graphical summaries for a time dependent pca for the
transformed Aircraft data. The bandwidth h = 7 was used. (Legend
for Proportions plot: pc1 - solid line, pc2 - dotted line, pc3 - short
dashed line, pc4 -medium dashed line, pc5 - long dashed line, and
pc6 - remaining line. Legend for loadings plots: log x1 - solid line,
log x2 - dotted line, log x3 - short dashed line, log x4 - medium
dashed line, log x5 - long dashed line, and log x6 - remaining line.)
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greater in size to the loadings of the other variables so we conclude
that range dominates the contribution to variability.

In the next section we see that variability is not constant over
time.

3 Reference bands assess whether

there is a time effect

The reference model of interest is H0 : Σ(t) = Σ or H0 : R(t) =
R ; that is, the null hypothesis is that the covariance matrix or
correlation matrix remains constant over time. Hence the loadings
(coefficients of the pcs) would remain constant over time. There is
the added complication that loadings which are eigenvector entries,
scaled so that the eigenvector has a particular length (in S-Plus
length of the eigenvector is 1), are unique only up to a sign change.
Care must be taken to ensure that when considering a particular
pc we standardize our loadings output so that all of the loadings of
one of the variables are always positive.

Assessing whether the covariance matrix or correlation matrix
has changed over time is difficult to do graphically, so we concen-
trate on assessing whether the coefficients (loadings) of the pcs that
account for most of the variation vary over time. If these do not
vary over time, then the covariance or correlation matrix from which
they are derived should also not vary over time.

It is not always immediately clear from the pc loadings plots
versus time, whether we have a time effect or if the relationships
exhibited can be attributed to sampling variation. As noted by
Bowman and Wright [2] confidence bands are difficult to construct
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because of the bias inherent in all forms of smoothing. Reference
bands are an alternative way of investigating whether there is a
genuine time relationship. Reference bands indicate where a non-
parametric curve should be expected to lie if a particular hypothesis
of interest holds (for more details see Bowman and Young [3] and
Bowman and Azzalini [1]). We implement reference bands through
suitable resampling techniques.

The idea behind testing for no time effect using reference bands
is simple. If there was no time effect then permuting the values of xi

that are associated with ti should lead to similar pc loadings after
we have taken the sign into account as discussed above, as well as
differences due to location and scale. We first standardize the data
and then obtain the nonparametric time dependent pca for this
data. The pc loadings are plotted against time for the pcs we con-
sider to account for most of the variability in the data. As discussed
earlier, the sign of the loadings needs to be taken into account so
that we always have the loading of one particular variable of the
pc under consideration always positive. To obtain the reference
bands we resample from this “new” data and perform nonparamet-
ric time dependent pca each time we resample. We retain the same
relationship regarding sign of loading of the particular variable of
the pc being considered as for the unpermuted standardized data.
These reference bands for the loadings of each pc considered should
indicate where the nonparametric curve for the loadings is likely to
be when the hypothesis of no time effect is correct. When obtain-
ing the standardised data, a much smaller smoothing parameter is
used in the calculation of the smoothed mean vector and smoothed
covariance matrix than in the nonparametric time dependent prin-
cipal component analysis. The kth entry of the standardized data
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vector at time ti is

eT
k (x(ti)− xw(ti))√

eT
k Sw(ti)ek

√
(
∑n

j=1 wj(ti) + 1)/
∑n

j=1 wj(ti)
,

where ek ∈ Rp has a 1 in the kth position and zeros elsewhere. If
the reference bands, obtained from the resamples from the stan-
dardized data, for each pc loading envelop the pc loading for the
unpermuted standardized data, then we conclude there is no time
effect. Typically 100 resamples or more are used in constructing the
reference bands.

For the aircraft data, logarithms of the data except for time
were taken, and we then used h = 1 to obtain the standardized
data. Nonparametric time dependent pca was performed on the
standardized data. Since the first three pcs of the unstandardized
data accounted for 83% to 90% of the variation, we plotted the load-
ings for the first three pcs for the standardized data. The reference
bands were obtained by permuting the standardized data and per-
forming nonparametric time dependent pca using h = 7. This was
done 100 times to give 100 reference bands for the loadings of the
first three first pcs. In all there were 18 plots. The reference bands
for the absence of time effect for the pc loadings for the first three
pcs (Figure 3, Figure 4, Figure 5) do not always envelop the pc
loadings for the standardized logarithm of the original aircraft data
so time has an effect on variability. This is not unexpected.

4 Discussion

With the advent of modern computing, it has become possible to
implement straightforward ideas which require substantial comput-
ing. The method presented here is one such example. A literature
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Figure 3: Reference bands for pc1 loadings. The bandwidth h = 7
was used. (a) log x1 loading versus time, (b) log x2 loading versus
time, (c) log x3 loading versus time, (d) log x4 loading versus time,
(e) log x5 loading versus time, (f) log x6 loading versus time.
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Figure 4: Reference bands for pc2 loadings. The bandwidth h = 7
was used.(a) log x1 loading versus time, (b) log x2 loading versus
time, (c) log x3 loading versus time, (d) log x4 loading versus time,
(e) log x5 loading versus time, (f) log x6 loading versus time.
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Figure 5: Reference bands for pc3 loadings. The bandwidth h = 7
was used.(a) log x1 loading versus time, (b) log x2 loading versus
time, (c) log x3 loading versus time, (d) log x4 loading versus time,
(e) log x5 loading versus time, (f) log x6 loading versus time.
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search revealed that Rice and Silverman [6] developed a smoothed
principal component analysis for functional data. Our approach dif-
fers from Rice and Silverman [6] and related approaches [7, e.g.])
in that instead of their assuming that the data X1(t), . . . , Xn(t) are
drawn from a stochastic process X on some bounded interval, we
consider the vectors of standard multivariate analysis have an extra
dimension such as time. We have measurements on several variables
at many time points, whereas Silverman [7] is measuring the same
variable for each of the n realisations of the stochastic process X.

One popular use of principal component analysis is as a data
reduction tool. In data mining, pca is explicitly used as a method
of data compression and is also known as the Karhunen-Loeve, or
K-L method (Han and Kamber [4, p.123]). If the data is collected
over time, it is important to assess whether it is appropriate to ig-
nore time and use the leading principal components to collapse the
dimensionality of the data. Nonparametric time dependent princi-
pal component analysis provides a method for assessing whether it
is sensible to reduce the data on the basis of pca, ignoring time.

Another type of application where pca has been found useful is
in identifying the most important sources of variation in anatomical
measurements in various species (Jolliffe [5]). If there is a factor
such as time, pca is usually performed ignoring it (e.g. aged ani-
mals) or at best performing separate pcas on subgroups of the data
(e.g. pups, yearlings, subadults, adults). If there is a time com-
ponent, it is reasonable to suspect that these sources of variation
vary over time. In the period of little growth before a growth spurt
one would expect the variability to be less. Nonparametric time
dependent pca should be able to detect this. The loadings of the
variables change over time would reveals another dimension about
growth.
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