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Abstract

We study the new streamline diffusion finite element method for
treating the three dimensional coupled nonlinear Schrödinger equation.
We derive stability estimates and optimal convergence rates. Moreover,
an a priori error estimate is obtained and we compare the corresponding
optimal convergence rate for popular numerical methods such as con-
servative finite difference, semi-implicit finite difference, semi-discrete
finite element and the time-splitting spectral method. We justify the
advantage of the streamline diffusion method versus the some numerical
methods with some examples. Test problems are presented to verify
the efficiency and accuracy of the method. The results reveal that the
proposed scheme is very effective, convenient and quite accurate for
such considered problems rather than other methods.
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1 Introduction

Developing new numerical ideas for approximation of the solutions of nonlinear
Schrödinger equations is an interesting research area of many engineers and
mathematicians. Also, the coupled nonlinear Schrödinger equations (cnlse) is
obtained in a great variety of physical situations [33, 34]. For example, in fiber
system, such equations have been shown to govern pulse propagation along
orthogonal polarization axes [10, 11, 19, 24, 33, 34]. Also, these equations
model beam propagation inside photo or crystals refractives as well as water
wave effects [33, 34]. Solitary waves are called vector solitons as they generally
contain two parts. In all the above physical situations, collision of vector
solitons is an important issue. In addition to passing-through collision is an
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important phenomena such that vector solitons also bounce off each other
or trap each other. Solutions of this system have been studied intensively in
recent years in numerical aspects and analytical [19, 20, 21, 22, 23, 24, 31, 32,
33, 34, 35, 36, 37]. Numerical examples were investigated by many authors
in the one dimensional case [21, 21, 22, 23, 24, 34]. But in three dimensional
case, many numerical methods are unstable [7, 8, 9, 10]. Therefore, we need
to give a stable method for solving this class of equation in three dimensions.

Streamline diffusion methods have been considered by many [2, 3, 4, 5,
6, 12, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30]. These methods are
alternative numerical approaches to the classical numerical methods such as
the finite element and boundary element method. They have attracted much
attention in recent years because of their flexibility and simplicity. These
methods perform slightly better than the standard finite element methods for
smooth solutions and non-smooth solutions to hyperbolic problems in three
dimensions [7, 8, 9, 10]. Contrived diffusion is joined only in the characteristic
direction so that internal layers are not smeared out, while the added diffusion
takes off oscillations near boundary layers.

We consider the example of the three dimensional coupled nonlinear Schrödinger
equations (cnlse) [34]:

i
∂ψ1

∂t
+
1

2
∆xψ1 +

(
|ψ1|

2 + e(t)|ψ2|
2
)
ψ1 = 0 ,

i
∂ψ2

∂t
+
1

2
∆xψ2 +

(
e(t)|ψ1|

2 + |ψ2|
2
)
ψ2 = 0 , (1)

where ∆x =
∑3

j=1
∂2

∂xj2
, ∇x = ( ∂

∂x1
, ∂
∂x2

, ∂
∂x3

) and x = (x1, x2, x3) ∈ R3. Also,
ψ1 and ψ2 are the wave amplitudes in two polarizations and e(t) is the
cross-phase modulation coefficient. The initial condition is

ψ1(x, 0) = g1(x), ψ2(x, 0) = g2(x), (2)

and boundary condition is

|∇xψ1(x, t)| = |∇xψ2(x, t)| = 0 as |x|→∞ . (3)
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We assume that the solution of the system (1) is negligibly small outside the
cube C = [xL, xR]× [xL, xR]× [xL, xR], and so we consider the coupled nonlinear
Schrödinger equations

i
∂ψ1

∂t
+
1

2
∆xψ1 +

(
|ψ1|

2 + e(t)|ψ2|
2
)
ψ1 = 0 ,

i
∂ψ2

∂t
+
1

2
∆xψ2 +

(
e(t)|ψ1|

2 + |ψ2|
2
)
ψ2 = 0 ,

in the domain C, with initial conditions

ψ1(x, 0) = g1(x), ψ2(x, 0) = g2(x),

and boundary conditions

|∇xψ1(x, t)| = |∇xψ2(x, t)| = 0 , x ∈ ∂C .

We decompose the complex functions ψ1 and ψ2 in the cnlse into its real
and imaginary parts by writing

ψ1(x, t) = u1 + iu2 , ψ2(x, t) = u3 + iu4 ,

where uj, j = 1, . . . , 4 , are real functions. Therefore, we explore the system

∂u1

∂t
+
1

2
∆xu2 + z1u2 = 0 ,

∂u2

∂t
−
1

2
∆xu1 − z1u1 = 0 ,

∂u3

∂t
+
1

2
∆xu4 + z2u4 = 0 ,

∂u4

∂t
−
1

2
∆xu3 − z2u3 = 0 ,

where we define

z1 = u
2
1 + u

2
2 + e(t)(u

2
3 + u

2
4),

z2 = e(t)(u
2
1 + u

2
2) + u

2
3 + u

2
4 .
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The above system in a matrix-vector form is

ut −
1

2
A4u+ F(u)u = 0 in (C× [0,T]),

u(x, 0) = u0 on x ∈ C , (4)
∇u = 0 , x ∈ ∂C ,

where ut = ∂u
∂t

, 4u = ∆xu , ∇u = (∇xu1,∇xu2,∇xu3,∇xu4)T ,

u =


u1
u2
u3
u4

 , A =


0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0

 , F(u) =


0 z1 0 0

−z1 0 0 0

0 0 0 z2
0 0 −z2 0

 ,

and if in (2), we have gj(x) = gj1(x) + igj2(x) for j = 1, 2 , then u0 =
[g11,g12,g21,g22]T . Yang [33] studied analytically the linear stability of two-
vector solitons bound states in the coupled nls equations by a tail-matching
method. He obtained some conditions for small eigenvalues and he showed
that these bound states are always linearly unstable due to the existence of
one unstable phase-induced eigenvalue.

Also, the stability properties of such solutions for external perturbations
as well as during interactions among themselves have been studied both
numerically [20, 23] and analytically [33]. For example, numerical simulations
of the propagation and interactions of one-dimensional Langmuir solitons and
their generation from random fluctuations by an external pump field were
presented by Ismail and Taha [20, 21, 22, 23, 24].

Recently, various numerical methods such as finite difference methods [22],
the finite element (fe) method [23], continuous Galerkin (cg) method [20],
discontinuous Galerkin (dg) method [31], and discontinuous Petrov–Galerkin
(dpg) with optimal test functions [37] have been widely used to solve this
problem. However, to the best of our knowledge, only some did numerical
work concerning these coupled equations using the finite difference Crank–
Nicolson (cn) scheme and the standard finite element method, while the
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intensive analysis of the precision of this method is very limited. Hence, it
is of great interests to develop an efficient and accurate method for these
equations. Therefore, Section 2 defines slabs for the space-time domain and
obtains the sd-method for (4) and Section 3 studies stability estimates and
proves convergence rates for the streamline diffusion approximation of the
cnlse. Computational results are given in Section 4, and finally conclusions
are given in Section 5.

2 Streamline diffusion method

2.1 Bézier elements

The p+ 1 Bernstein basis polynomial of degree k are defined for t ∈ [0, T ] as

Bi,k(t) =

(
k

i

)
ti
(T − t)k−i

Tm
, i = 0, . . . ,k . (5)

These constitute a basis of the polynomials of degree k and are pointwise non-
negative. The motivation for performing finite element computation using this
basis is that a piecewise Bernestein polynomial basis is mapped onto a B-spline
basis by invoking the Bézier extraction operator [36]. This transformation
enables the representation of a nurbs (i.e., non uniform rational basis spline)
or a T-spline by using a set of Bézier elements. Therefore, we consider a
Bézier curve of degree p that is defined by a linear combination of k + 1
Bernstein polynomial basis functions. We define the set of basis functions as
B(t) = {Bi,k(t)}

k+1
i=1 , and the corresponding set of vector-valued control points

as P = {Pi}
p+1
i=1 where each Pi ∈ Rd, d being the number of spatial dimensions,

and P is a matrix of dimension (k + 1)× d; that is, P =
{
Pji
}k+1,d
i,j=1 . Hence,

the Bézier curve is

Rk(t) =

k+1∑
i=1

PiBi,k(t), t ∈ [0, T ].
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Figure 1: The slabs on Rectangle when the horizontal line shows X = 1
3

∑3
j=1 xj

.

2.2 The new streamline diffusion

This section considers the sd-method for solving (4) that is based on using
finite element over the space-time domain Ω = C × [0, T ]. To define this
method, let 0 = t0 < t1 < · · · < tN = T be a subdivision of the time
interval [0, T ] into intervals In = (tn, tn+1), with time steps kn = tn+1 − tn ,
n = 0, 1, · · · ,N− 1 , and introduce the corresponding space-time slabs (see
Figure 1), that is,

Sn = {(x, t) : x ∈ C, tn 6 t < tn+1}, (6)

for n = 0, 1, . . . ,N − 1 . Further, for each n let Un be a finite element
subspace of (L2(Sn))4. Summing over n, taking all the slabs together we get
the function space U =

∏N−1
n=0 U

n. For h > 0 , we define Tnh such that be a
triangulation of the slab Sn into triangles K satisfying as usual the minimum
angle condition [9] and assume that the parameter h is represented with the
maximum diameter of the triangles K ∈ Tnh . We introduce

Un
h =
{
u ∈ Un : u|K ∈ (Rk(K))

4 for K ∈ Tnh
}
,

where Rk(K) denotes the set of Bézier polynomials in K of degree less than or
equal k and we define the function space that summing over n, taking all the
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slabs together,

Uh =

N−1∏
n=0

Unh.

We use the following notation. Given a domain Ω, we denote (·, ·)Ω as the
usual L2(Ω) scalar product, ‖ · ‖ = ‖ · ‖L2(Ω) the corresponding L2 norm, and
for a positive integer k, Hk(Ω) denote the usual Sobolev space of functions
with square integrable derivative of order less than or equal k with norm
‖ · ‖k,Ω [1]. We formulate the sd-method on the slab Sn for (4), as follows.

For n = 0, . . . ,N− 1 , find unh ∈ Un
h such that

[
unh,t + F(u

n
h)u

n
h,g + δ(gt + F(unh)g)

]
n
+
1

2
(A∇unh,∇g)n

−
1

2
δ [A4un

h,gt + F(un
h)g]n + 〈u

n
h,+,g+〉n = 〈un

h,−,g+〉n. (7)

Where δ = C̄h with C̄ is a suitable chosen (sufficiently small, [28]) positive
constant. Further, we define the following notations for (7):

(u,g)n =

∫
Sn

uT · g dxdt ,

(u,g)Ω =

N−1∑
n=0

(u,g)n ,

〈u,g〉n =

∫
Ω

uT(x, tn). g(x, tn)dx ,

u+(x, t) = lim
s→0+ u(x, t+ s),

u−(x, t) = lim
s→0− u(x, t+ s).
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We introduce the following notation:

B(F(ũ);u,g) =
N−1∑
n=0

[
(ut + F(ũ)u,g + δ(gt + F(uh)g))n +

1

2
(A∇u,∇g)n

−
1

2
δ(A4u,gt + F(uh)g)n

]
+

N−1∑
n=1

〈[u],g+〉n + 〈u+,g+〉0 , (8)

and the linear form
L(g) = 〈u0,g+〉0 .

Where we define u = (u1,u2,u3,u4)T and [u] = ([u1], [u2], [u3], [u4])T such
that for q = ui , i = 1, 2, 3, 4 , we have [q] = q+ − q− . Observe that uh
depends on B in the first term on the right hand side of (8). Now the
problem (7) is more concisely formulated as follows.

Find uh ∈ Uh such that, for g ∈ Uh ,

B(F(uh);uh,g) = L(g). (9)

3 Stability for the streamline diffusion method

This section concludes the stability estimate for the sd-method (9). These
estimate are of crucial importance in proving the finite element analysis.
From the generalized Lax–Milgram lemma, we know that the problem has a
unique solution, if the conditions are satisfied in Proposition 1 also, then we
investigate some properties of B.

Proposition 1. For any g ∈ U ,

B(F(uh);g,g) >
1

2
|||g|||2, (10)
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with the norm ||| · ||| defined as

|||g|||2 =
1

2

{
|g−|

2
N + |g+|

2
0 +

N−1∑
n=1

|[g]|2n + 2δ‖gt + F(uh)g‖2Ω + 2‖∇g‖2Ω

}
.

(11)

Proof: Using the definition of the form B and setting u = g

B(F(uh);g,g) = (gt,g)Ω + (F(uh)g,g)Ω + δ‖gt + F(uh)g)‖2Ω
+
1

2
(A∇g,∇g)Ω −

1

2
δ(A4g,gt + F(uh)g)Ω

+

N−1∑
n=1

〈[g],g+〉n + 〈g+,g+〉0 . (12)

Integrating by parts yields

(gt,g)Ω +

N−1∑
n=1

〈[g],g+〉n + 〈g+,g+〉0 =
1

2

{
|g−|

2
N + |g+|

2
0 +

N−1∑
n=1

|[g]|2n

}
. (13)

By using the definitions,

(F(uh)g,g)Ω =

∫
Ω




0 z1,h 0 0

−z1,h 0 0 0

0 0 0 z2,h
0 0 −z2,h 0



g1
g2
g3
g4


 ·


g1
g2
g3
g4

 ds

=

∫
Ω

[
z1,hg2 −z1,hg1 z2,hg4 −z2,hg3

]
·


g1
g2
g3
g4

 ds
=

∫
Ω

(z1,hg2g1 − z1,hg1g2 + z2,hg4g3 − z2,hg3g4)ds = 0 , (14)
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and

(A∇g,∇g)Ω =

∫
Ω



0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0



∂g1
∂x
∂g2
∂x
∂g3
∂x
∂g4
∂x


 ·


∂g1
∂x
∂g2
∂x
∂g3
∂x
∂g4
∂x

 ds

=

∫
Ω

[
−∂g2

∂x
∂g1
∂x

−∂g4
∂x

∂g3
∂x

]
·


∂g1
∂x
∂g2
∂x
∂g3
∂x
∂g4
∂x

 ds
=

∫
Ω

(
−
∂g2

∂x

∂g1

∂x
+
∂g2

∂x

∂g1

∂x
−
∂g3

∂x

∂g4

∂x
+
∂g3

∂x

∂g4

∂x

)
ds = 0 .

(15)

By the inverse inequality and the inequality 2ab 6 εa2 + ε−1b2 for a,b real
numbers and ε > 0 ,

1

2
δ |(A4g,gt + F(uh)g)Ω| 6

1

4

(
‖∇g‖2Ω + δ‖gt + F(uh)g‖2Ω

)
6
1

4
|||g|||2 <

1

2
|||g|||2. (16)

Therefore, combining (12)–(16) the proof is completed. ♠

We use the standard argument for finite elements and introduce the linear
nodal interpolate Ihu ∈ Uh of the exact solution u and we set η = u − Ihu
and ξ = uh − Ihu . Thus,

ζ := u− uh = (u− Ihu) − (Ihu− uh) = η− ξ .

Recalling the Galerkin orthogonality relation

B(ζ,u) = 0 . (17)

Now we prove the basic global error estimate by using Proposition 1.
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Proposition 2. If uh ∈ Uh satisfies (8) and u ∈ Hk+1(Ω) with k > 1 is
exact solution (4) and also

‖u‖∞ + ‖F(u)‖∞ + ‖∇η‖∞ 6 C ,

then there is a constant C such that

|||u− uh||| 6 Chk+1/2‖u‖k+1,Ω . (18)

Proof: Using the definition of η we write

B(F(u);u, ξ) − B(F(uh); Ihu, ξ)
= B(F(uh);η, ξ) + B(F(u);u, ξ) − B(F(uh);u, ξ) := T1 + T2 − T3.

Now we estimate the terms T1 and T2 − T3 separately. For the term T1 we use
the inverse inequality, therefore

T1 = B(F(uh);η, ξ) = (ηt + F(uh)η, ξ+ δ(ξt + F(uh)ξ))Ω +
1

2
(A∇η,∇ξ)Ω

−
1

2
δ(A4η, ξt + F(uh)ξ)Ω +

N−1∑
n=1

〈[η], ξ+〉n + 〈η+, ξ+〉0 .

By using property of F, integrating by parts, and since Ω is bounded with
zero boundary condition we get

T1 = −(η, ξt + F(uh)ξ)Ω + δ(ηt + F(uh)η, ξt + F(uh)ξ)Ω +
1

2
(A∇η,∇ξ)Ω

−
1

2
δ(A4η, ξt + F(uh)ξ)Ω + 〈η−, ξ−〉N −

N−1∑
n=1

〈η−, [ξ]〉n .

We use inverse inequality and have

1

2
|(A∇η,∇ξ)Ω| 6

1

2
‖A∇η‖Ω‖∇ξ‖Ω

6 C1‖∇η‖Ω‖∇ξ‖Ω 6 Ch−1‖η‖2Ω + ‖∇ξ‖2Ω , (19)
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and

1

2
δ|(A4η, ξt + F(uh)ξ)Ω| 6

1

2
δ‖A4η‖Ω‖ξt + F(uh)ξ‖Ω

6
1

2
δ‖η‖Ω‖ξt + F(uh)ξ‖Ω 6 Ch−1‖η‖2Ω +

δ

2
‖ξt + F(uh)ξ‖2Ω . (20)

By using (19) and (20) and a similar argument as in the proof of Proposition 1,

|T1| 6
1

2
|||ξ|||2+C

{
h−1‖η‖2Ω + h‖ηt + F(uh)η‖2Ω + |η−|

2
N +

N−1∑
n=1

|η−|
2
n

}
. (21)

To estimate the term T2 − T3, we follow a similar argument to Adams [1]:

|T2 − T3| = |(ut + F(u)u, ξ+ δ(ξt + F(uh)ξ))Ω
− (ut + F(uh)u, ξ+ δ(ξt + F(uh)ξ))Ω|

= |(F(u) − F(uh))u, ξ+ δ(ξt + F(uh)ξ))Ω|
6 ‖F(u) − F(uh)‖Ω‖u‖∞‖ξ‖Ω + Ch‖F(u) − F(uh)‖2Ω‖u‖2∞

+
Ch

8
‖ξt + F(uh)ξ‖2Ω . (22)

By using the definition of F,

‖F(u) − F(uh)‖Ω 6 C‖u− uh‖Ω 6 C(‖ξ‖Ω + ‖η‖Ω). (23)

Now we combine the estimates (21)–(23), therefore ‖ξt + F(uh)ξ‖2Ω and the
proof is completed. ♠

4 Experimental results

This section presents two numerical examples of the proposed scheme (8).
To motivate the work of the streamline diffusion method, we present a non-
smooth solution. The accuracy of the new sd-method is tested by looking at
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the error using L2 norm, which is an important feature of smooth solutions.
In Tables 1 and 2 we observe that the accuracy of this scheme is better
than other methods (that is, cn, fe, cg, dg and dpg) by comparing the
numerical solution with the exact solution at each time level. We know that
equations (1)–(4) admit two stationary solutions:

ψ1(x1, x2, x3, t) =

√
2α

1+ e
sech
{√

α

(√
x21 + x

2
2 + x

2
3 − 2vt

)}
× exp

(
i

{
v

√
x21 + x

2
2 + x

2
3 − [v2 − α]t

})
,

ψ2(x1, x2, x3, t) = ±
√

2α

1+ e
sech
{√

α

(√
x21 + x

2
2 + x

2
3 − 2vt

)}
× exp

(
i

{
v

√
x21 + x

2
2 + x

2
3 − [v2 − α]t

})
,

where xL = −20 , xR = 20 , h = 0.1 , v = 1.0 , α = 1.0 , and for having a
non-smooth solution we assume the following two cases:

Case 1 for T = 0.5 ,

e(t) =

{
1.0 t > 0.3 ,
0.0 t 6 0.3 ;

(24)

Case 2 for T = 1.0 ,

e(t) =

{
et

2−1 t > 0.5 ,
sin t t 6 0.5 .

(25)

Also, the accuracy is measured by L2 error norm defined by

‖ζ(h)‖ = ‖u− uh‖ =

√√√√h M∑
j

∣∣∣u(xj1, xj2, xj3, t)− uhj∣∣∣2 .
The order of error is calculated using

Order of error ≈ ln(ζ(h))
lnh

.
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We carry out (9) on an amd Opteron computer with 15GB ram memory
with 2.2GHz cpu for these experiments. For each slab Sn, we consider a mesh.
For h > 0 let Tnh be a triangulation of the slab Sn into triangle K, satisfying
as usual the minimum angle condition [30]. The triangulation of Sn may be
chosen independently of that of Sn−1, but for the sake of simplicity it must
satisfy quasi-uniformity conditions for finite element meshes [7, 8, 9, 10]. To
give numerical results obtained using the new sd-method, we use finite element
approximation on a space-time slab with trial functions which are piecewise
polynomials in space and linear in time. That is, for x = (x1, x2, x3, t) ∈ Sn ,

Imag(ψ1,h)n(x, t) =
M∑
i=1

ϕi(x)(θ1(t)ũ
n
1,i + θ2(t)u

n+1
1,i ),

Imag(ψ2,h)n(x, t) =
M∑
i=1

ϕi(x)(θ1(t)ũ
n
2,i + θ2(t)u

n+1
2,i ),

Real(ψ1,h)n(x, t) =
M∑
i=1

ϕi(x)(θ1(t)ũ
n
3,i + θ2(t)u

n+1
3,i ),

Real(ψ2,h)n(x, t) =
M∑
i=1

ϕi(x)(θ1(t)ũ
n
4,i + θ2(t)u

n+1
4,i ), (26)

such that ϕi(xj) = δij, (j = 1, . . . ,M) is the spatial shape functions at node i,
θ1(t) and θ2(t) are the time interpolation functions defined for Bézier curves.
Also, the nodal value of u for node i at (tn)+ and (tn+1)− are denoted by ũni
and un+1i . The test functions gnh for each time slab are defined as ϕj(x)θ1(t)
and ϕj(x)θ2(t) for j = 1, . . . ,M .

The error of thesd-method and other methods with exact solutions for the
image part and real part are compressed into Table 1 by L2 norm, for Case 1.
Also, we repeat the results for Case 2 in Table 2. Hence, the evolution of
error by different methods, at the given time and δ are given in Tables 1–2.
Moreover, Figure 2 plots the L2 errors for the terminating time T = 0.5 ,
k = 0.001 and δ = 0.01 as a function of cpu time for the new sd-method.
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Figure 2: The L2 errors for percentage of terminating time, δ = 0.01 , as a
function of cpu time for the new sd-method for Case 1 (top) and Case 2
(bottom).
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Table 1: L2 error for h = 0.1 and time step 0.01 by different methods for
t = 0.3 in Case 1. The sd method is for δ = 0.00125 .

x cn cg fe dg dpg sd
(−20,−20,−20) 1.8e−5 6.2e−5 1.3e−9 1.5e−9 1.1e−10 3.2e−11
(−20,−20, 20) 2.1e−6 6.1e−6 3.5e−8 7.3e−10 2.7e−10 2.4e−10
(−20, 20,−20) 7.2e−6 7.7e−6 3.8e−8 6.5e−10 7.4e−10 9.5e−10
(20,−20,−20) 6.4e−6 8.8e−6 4.0e−8 0.8e−10 6.5e−10 8.3e−11
(20, 20,−20) 7.3e−6 5.9e−6 1.8e−8 8.5e−10 2.9e−10 7.6e−10
(20,−20, 20) 3.2e−6 6.4e−6 9.4e−8 7.3e−10 8.7e−11 7.6e−11
(−20, 20, 20) 5.1e−5 3.3e−6 6.5e−9 5.9e−10 3.3e−10 2.6e−10
(20, 20, 20) 2.3e−5 2.6e−5 2.0e−8 6.5e−9 8.4e−10 4.1e−11
order 2.1 2.9 3.4 3.9 3.9 4.4

Remark 3. In the fe method, we choose linear spline functions as basis
functions. For the all methods in the tables, the fourth order Runge–Kutta
method is used to solve the system of ode at each time level. In the cg
we use trial functions which are piecewise linear and continuous whereas the
test functions are piecewise constant and discontinuous. In particular, all
the analysis is made taking the parameter δ = 0 , and therefore the method
analyzed is the discontinuous Galerkin (dg) method [32], not the streamline
diffusion method. In the dg and sd-methods we consider that both the trial
and test functions are piecewise linear and discontinuous. The compound
trapezoidal integral formula computes the integration in coefficient matrices
in the above methods. Also, we use the algorithm of dpg form [36]. A useful
book for constructive algorithms was written by Yang [34].

Based on the numerical results of others [29, 30, 37], we observe that the new
sd-scheme is better than the finite difference methods and standard finite
element by comparing the numerical solution with the exact solution. The
agreement of the error estimates between theoretical analysis and numerical
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Table 2: L2 error for h = 0.1 and time step 0.01 by different methods for
t = 0.5 in Case 2. The sd method is for δ = 0.00125 .

x cn cg fe dg dpg sd
(−20,−20,−20) 6.2e−6 4.7e−6 2.0e−8 3.4e−9 1.2e−9 7.6e−10
(−20,−20, 20) 7.5e−5 4.2e−6 5.1e−8 2.6e−10 7.6e−10 5.0e−10
(−20, 20,−20) 3.1e−7 7.4e−6 5.4e−9 1.8e−10 1.0e−9 5.6e−10
(20,−20,−20) 7.0e−5 1.0e−5 3.2e−8 2.3e−9 8.7e−11 4.1e−11
(20, 20,−20) 7.0e−6 5.0e−6 1.8e−8 8.7e−10 8.9e−10 1.6e−10
(20,−20, 20) 1.0e−6 9.7e−6 1.9e−8 9.8e−10 9.6e−10 4.5e−10
(−20, 20, 20) 8.9e−6 5.4e−6 9.8e−8 1.0e−10 7.8e−10 1.0e−10
(20, 20, 20) 1.2e−7 2.8e−6 8.9e−8 1.0e−9 5.6e−10 3.2e−10
order 2.1 2.5 3.3 3.9 3.9 4.8

results shows that our method is efficient. We know that cpu time (or process
time) is measured in clock ticks or seconds. Therefore, in Figure 2, we report
cpu times for this equation by the new sd-method. Here, we observe that
cpu times and L2 errors have similar behaviours. Also we give Figure 3, since
there needs to be a comparison, across the different numerical schemes, of
cpu (computational effort) for the given fixed accuracy and it is useful to
measure cpu time as a percentage of the cpu’s capacity, which is called the
cpu usage. Hence, we observe that the behaviour of cpu time and cpu usage
in the new sd algorithm are better than others. For Figures 4–7, we consider
that X = 1

3

∑3
j=1 xj and δ = 0.01 for Case 1 and Case 2 respectively. In

particular, the surfaces of ei in Figures 4–7 only produce very little difference.
The reason maybe due to that the error order of the new sd-method is close
to four, whereas the error order is two on cn method and the error order is
three on the dg, fe, cg, dpg methods. The agreement of the error estimates
between theoretical analysis and numerical results shows that our method is
efficient.
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5 Conclusion

The streamline diffusion is developed by solving coupled nonlinear Schrödinger
equations with non-smooth coefficient. This cannot be as a simple application
of streamline diffusion because we can obtain the optimal convergence rate
for the new sd-method that is O(hk+1/2). Recently, powerful stabilization
techniques were introduced [25, 26, 28, 36], but for this equation, they are
weak. The numerical results confirm that the new sd-method is more efficient
than other methods for this equation. The theory is illustrated by a numerical
example and the superior accuracy of this scheme is shown by comparing
the numerical solutions with the exact solutions. A posteriori error estimate
remains a challenge that deserves special attention and will be considered
elsewhere.
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