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Accuracy issues of Monte-Carlo methods
for valuing American options
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Abstract

In this paper we discuss accuracy issues of the Monte-
Carlo method for valuing American options. Two major er-
ror sources are discussed: the discretization error of numeri-
cal methods for simulating stochastic models and the statis-
tical error of finite samples. As the explicit Euler method is
dominant in the extant literature of computational finance,
it is strongly recommended to use numerical methods with
higher convergence order to reduce the discretization error.
In this paper we use the trapezoidal method for simulating
the one-factor and two-factor models for commodity prices.
For the Monte-Carlo method for valuing American options,
variance reduction techniques are applied to reduce the sta-
tistical error.
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1 Introduction

The valuation and optimal exercise of American options is one of
the most important and difficult problems in option pricing theory.
This type of derivatives is found in all major financial markets, in-
cluding equity, commodity, foreign exchange, insurance and energy.
However, despite recent advances, the valuation of American op-
tions remains one of the most challenging problems in derivative
finance. For financial models driven by one stochastic process, the
finite difference method and binomial techniques are widely used by
researchers and financial analysts. But these methods become im-
practical when considering multiple factor models which give better
description of practical financial problems. In recent years, Monte-
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Carlo (mc) methods have become increasingly attractive compared
with other methods for valuing American options with multiple fac-
tor stochastic processes [1, 2, 7, 9].

The major advantages of the mc method are its simplicity and
flexibility. It can be used to deal with stochastic models which are
driven by multiple Wiener processes and/or by other stochastic pro-
cesses such as the Poisson process. In addition, the standard error of
the estimate, according to the Central Limit Theorem, is O(1/

√
N),

where N is the number of simulations. This implies that the conver-
gence speed of the mc method depends on the number of simulations
but is independent of the dimension of the problems. This is the
dominant advantage of the mc method. In addition, modern com-
puters are much faster and have larger storage. For example, using
parallel computers can reduce computing time significantly.

The major drawback of the mc method is its slow rate of con-
vergence O(1/

√
N). A large number of simulations are needed to

obtain suitable results. Numerical techniques for improving the con-
vergence properties of the mc method have been developed in recent
years. Boyle et al. [1] reviewed these techniques which have been
applied to financial applications.

Compared with the widely discussed statistical error, introduced
by the finite sampling, little has been done for reducing the dis-
cretization error which is introduced by numerical methods for sim-
ulating stochastic models. The explicit Euler method is dominant
in the extant financial literature. The reason is partly because of
the difficulties in designing efficient numerical methods for solving
stochastic differential equations (sdes). The numerical behaviour of
the explicit Euler method is poor because of its low convergence or-
der and stability properties. Although the accuracy of this method
is improved by reducing the step size, the computational cost is
very large. In addition, this approach may be also restricted by the
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number of exercise dates in financial practice. For stochastic models
which are stiff in the deterministic and/or stochastic components,
it is imperative to use methods with both higher convergence order
and better stability properties, such as methods found in [8, 11, 12].

In this paper we discuss accuracy issues of the mc method for
valuing American options. In Section 2 we will discuss the dis-
cretization error of numerical methods. The principle of the least-
square Monte-Carlo (lsm) method for valuing American options is
presented in Section 3. Three variance reduction techniques are pre-
sented in Section 4. Numerical results are reported in Section 5 for
valuing American options of the one-factor and two-factor models
for commodity prices.

2 Discretization errors

In this section we use the one-factor model for commodity prices,
introduced by Schwartz [10], to discuss the accuracy issue of nu-
merical methods for simulating stochastic models. The two-factor
model is discussed in Section 5. This one-factor model gives the
spot price which follows a mean reverting type of process

dS = α(µ− λ− ln S)S dt + σS dW (t) , (1)

where S(t) is the spot price at time t, α is the mean reversion
rate which indicate the speed of adjustment of the spot price back
towards its long term level µ, σ is the spot price volatility, λ is the
market price of energy risk and W (t) is the Wiener process.

Letting x = ln S and applying the Itô lemma to the one factor
model (1), the log price x is characterised by the Ornstein-Uhlenbeck
process

dx = α(µ̂− x) dt + σ dW (t) , (2)
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where µ̂ = µ− λ− σ2/2α .

With appropriate boundary conditions, future and forward prices
at time t with maturity s are equal and given by

F (t, s) = exp

[
e−α(s−t) ln S + (1− e−α(s−t))µ̂ +

σ2

4α
(1− e−2α(s−t))

]
.

(3)
Clewlow and Strickland [3, 5] gave formulas to calculate the analytic
European call option value for the one-factor model (1). The price
of a European put option under the same condition can be given by
the put-call parity.

The time period [0, T ] is divided into L subintervals with step
size h = T/L . Here T is the option maturity date. Applying the
explicit Euler method [8] to (2), gives

xn+1 = xn + αh(µ̂− xn) + σ ∆Wn , (4)

where ∆Wn = W (tn+1)−W (tn) is a Gaussian random variable and
∆Wn ∼ N(0,

√
h) . The Euler scheme (4) is of strong order one for

equations with additive noise.

In order to improve the accuracy of numerical option values, we
can solve the sde (2) with smaller step size, and/or use methods
with higher convergence order. Applying the trapezoidal method [8]
with strong order two for solving SDE (2), gives

xn+1 = xn + αh

(
µ̂− xn + xn+1

2

)
+ σ ∆Wn . (5)

For the simulated spot price Si = exp(xi) , the futures or forward
price F (T, s) can be evaluated by (3) at T . Supposing that N sim-
ulations are obtained, then the value of the call option is obtained
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Figure 1: Numerical call option values by the Euler method and
the trapezoidal method with h = 0.05 and h = 0.01 .

by the discounted average of these simulated payoffs [5]:

Êcall(t) = P (0, T )
1

N

N∑
i=1

max(0, Fi(T, s)−K) , (6)

where Fi(T, s) represents the forward price at T in the ith simula-

tion, and P (0, T ) = exp
(
−
∫ T

0
r(u) du

)
with the interest rate r(u).

For this one-factor model, we use the data from [5] with S0 =
$26.90 , α = 0.472 , µ = 2.925 , σ = 0.368 , λ = 0 and K = 23.20 .
We price a 6 month (T = 0.5) at-the-money (strike price equal to
current futures price implying F = K = 23.20) option on a future
contract with an original maturity of 1 year (s = 1.0). Interest
rates are assumed to be constant at 10%. For these given data, the
analytic European call option value is 1.6094 .

Figure 1 gives call option values obtained by the explicit Euler
method and the trapezoidal method. When the number of simu-
lations N approaches infinity, the numerical option values do not
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converge to the analytic value but converge to a different value with
the discretization error. This phenomenon is best illustrated by the
option values obtained by the explicit Euler method with h = 0.05 .
We obtain more accurate option values by the trapezoidal method
and/or with a smaller step size h = 0.01 . Certainly a smaller step
size means better accuracy but the computing cost is very large.

Remark: the strong convergence order of a numerical method is
more important when considering a stochastic model with multi-
plicative noises. For solving sdes driven by multiplicative noises,
the strong convergence order of the explicit Euler method is just
half.

3 The least-square Monte-Carlo

method

Under the risk-neutral measure, unlike the European call option
price, given by

Ecall = E

[
exp

(
−
∫ T

0

r(ω, u) du

)
max{S(T )−K, 0}

]
, (7)

the American call option pricing problem is to find

Acall = max
τ

E

[
exp

(
−
∫ τ

0

r(ω, u) du

)
max{S(τ)−K, 0}

]
(8)

over all stopping times τ ≤ T . Here S(τ) is the terminal stock price
at time τ , K is the strike price, T is option maturity and r(ω, u) is
the possible riskless interest rate associated with the realized path ω.
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Here it is assumed that the American option can be only ex-
ercised at L discrete times 0 < t1 ≤ t2 ≤ · · · ≤ tL−1 ≤ tL = T .
In practice, American options are continuously exercisable, and the
option value is approximated by taking L to be sufficiently large.

At the final expiration date tL = T , the option holder may
exercise the option if it is in the money, or allow it to expire if it is out
of the money. It is equivalent to a valuation problem for European-
type securities (7). At exercise time ti (ti < T ) , the option holder
must choose whether to exercise immediately or to continue the life
of the option and revisit the exercise decision at the next exercise
time ti+1. At time ti, the cash flow from immediate exercise is known
and equals the value of immediate exercise. The cash flow from
continuation is not known at time ti. No-arbitrage valuation theory
implies that the value of continuation V (ω, ti) is given by taking
the expectation of the remaining discounted cash flows C(ω, u; ti, T )
with respect to the risk-neutral pricing measure Q, namely

V (ω, ti) = EQ

[
L∑

j=i+1

exp

(
−
∫ tj

ti

r(ω, u) du

)
C(ω, tj; ti, T )|Fti

]
.

(9)
Here the expectation is taken conditional on the information set Fti

at time ti. With this representation, the problem of optimal ex-
ercise reduces to comparing the immediate exercise value with the
conditional expectation V (ω, ti), and then exercising as soon as the
immediate exercise value is not less than the conditional expecta-
tion.

For valuation of American options, Longstaff and Schwartz [9]
introduced the lsm method to provide a pathwise approximation
to the optimal stopping rule that maximizes the value of the Amer-
ican option. This method uses least squares to approximate the
conditional expectation function V (ω, ti) at ti, i = L−1, . . . , 1 . We
work backwards since the path of cash flows C(ω, u; t, T ) generated
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by the option is defined recursively; C(ω, u; ti, T ) can differ from
C(ω, u; ti+1, T ) since it may be optimal to stop at time ti+1, thereby
changing all subsequent cash flows along a realized path ω. Here it is
assumed that the unknown functional form of V (ω; ti) can be repre-
sented as a linear combination of a countable set of Fti-measurable
basic functions. As an example in [9], Longstaff and Schwartz uses
the powers of the state variable X as the basis functions, namely

V (ω; ti) = ai0 + ai1X + ai2X
2 , (10)

where ai0, ai1 and ai2 are coefficients to be determined. Other func-
tions, such as the Laguerre, Legendre, Chebyshev and Jacobi poly-
nomials, can be also used as basis functions.

There are two major steps in the lsm method. With N sim-
ulations of the stochastic model, the first step is to estimate the
coefficients of V (ω, ti) in (10) by projecting or regressing the dis-
counted values of C(ω, u; ti, T ) onto the basic function for the in-
the-money paths at time ti. Based on the conditional expectation
function, the second step is to determine the early exercise deci-
sion at time ti by comparing the immediate exercise value with the
regression value V (ω; ti) for each in-the-money path. Once the exer-
cise decision is identified, the option cash flow paths C(ω, u; ti, T ) is
approximated. The recursion proceeds by rolling back to time ti−1

and repeating the procedure until the exercise decisions at each
exercise time along each path have been determined. Finally the
American option is valued by

Âcall =
1

N

N∑
k=1

exp

(
−
∫ t

(k)
i

0

r(ω, u) du

)
max{S(t

(k)
i )−K, 0} , (11)

where t
(k)
i is the optimal valuation time for path k. If there is no

optimal valuation time for path k, max{S(t
(i)
k ) − K, 0} = 0 . For

detailed description of the lsm method, see [9].
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4 Variance reduction techniques

Suppose that we want to estimate a parameter θ by the i.i.d se-
quence {θ̂i, i = 1, 2, . . . , N} , where each θ̂i has expectation θ and
variance σ2. A natural estimator of θ based on these N replications
is the sample mean θ̂ together with a sample variance estimation σ̂2:

θ̂ =
1

N

N∑
i=1

θ̂i, σ̂2 =
1

N − 1

N∑
i=1

(θ̂i − θ̂)2 .

By the Central Limit Theorem, for large N this sample mean is ap-
proximately normally distributed with mean θ and variance σ2/N .
The error in the estimator is proportional to σ/

√
N . Thus it is

unwise to improve the accuracy of the estimator by increasing the
number of replications because deceasing the error by a factor of 10
means increasing the number of replications by a factor of 100 .

An alternative way to improve the accuracy is to use variance
reduction techniques. There are several variance reduction tech-
niques which are effective in financial application [1]. In this paper
we apply three techniques, which are briefly introduced below, to
the lsm method for valuing American options.

4.1 Antithetic variates

Suppose that {∆Ii} are independent samples from the standard nor-
mal distribution N(0, 1), then {−∆Ii} are also independent samples
from N(0, 1). Denote Ci, Ĉi, (i = 1, . . . , N) as numerical security
prices derived from {∆Ii} and {−∆Ii}, respectively. The sampled
security price is obtained by the standard mc method and the an-
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tithetic variates method:

Ĉmc =
1

N

N∑
i=1

Ci ; Ĉav =
1

N

N∑
i=1

Ci + Ĉi

2
.

A heuristic argument for preferring Ĉav notes that the random in-
puts in the antithetic variates method, {(In,−In)} , are more reg-
ularly distributed than a collection of 2n independent samples. In
particular, the mean of these 2n samples is always 0 .

The efficiency of the antithetic variates is measured by the vari-
ance reduction. As Ci and Ĉi have the same variance,

Var

[
Ci + Ĉi

2

]
=

1

2
(Var[Ci] + Cov[Ci, Ĉi]) ,

thus Var[Ĉav] ≤ Var[Ĉmc] if Cov[Ci, Ĉi] ≤ Var[Ci] . Notice that Ĉav

uses twice as many replications as Ĉmc. Thus the antithetic variate
is effective if

2Var[Ĉav] ≤ Var[Ĉmc] .

More detailed conditions can be found in [1] for the effectiveness of
the antithetic variate technique.

4.2 Control variates

The idea in the control variates is “to use what we know”. Let ĈU be
the numerical price of an option, obtained by N simulations, whose
analytic value is not tractable. If we use the same simulations to
calculate the price of another option ĈK whose analytic value CK

is known, the difference in the option values ĈK − CK is used to
improve the accuracy of the estimated value ĈU :

Ĉcv
U = ĈU + (CK − ĈK) .
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In order to improve the efficiency of the control variates, we consider
the following a family of unbiased estimators

Ĉβ
U = ĈU + β(CK − ĈK) (12)

with parameter β. The variance of the estimator is

Var[Ĉβ
U ] = Var[ĈU ] + β2Var[ĈK ]− 2βCov[ĈU , ĈK ] .

The estimator (12) will be effective by choosing the variance mini-
mizing parameter β:

βmin =
Cov[ĈU , ĈK ]

Var[ĈK ]
.

In practice we have two options for the control variates for the
given N independent replications. The first is to use N1 (typically
N1 � N) simulations for estimating βmin and the other N−N1 sim-
ulations for estimating Ĉβ

U . The disadvantage of this approach is
the accuracy of βmin. The second is to use these N simulations to
estimate βmin and the option value Ĉβ

U simultaneously. A more ac-
curate estimator βmin can be obtained but we must face the bias
in the estimator Ĉβ

U . Notice that neither issue significantly limits
the applicability of the method. The estimator of βmin need not
be very precise to achieve a reduction in variance, and the possible
bias in the second implementation vanishes as N increases. The
first approach will be used in this paper.

4.3 Moment matching methods

The idea of moment matching methods is to keep the generated
random numbers satisfying the statistical properties of random vari-
ables. For a random variable Z with mean µZ and variance σ2

Z , the
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samples Zi (i = 1, . . . , N) normally do not satisfy the statistical
properties, namely

Z =
1

N

N∑
i=1

Zi 6= µZ , σ2
Z =

1

N − 1

N∑
i=1

(Zi − Z)2 6= σ2
Z .

Thus by an appropriate transformation

Ẑi = (Zi − Z)
σZ

σZ

+ µZ , (13)

the sample mean and the sample variance of Ẑi are µZ and σ2
Z .

Unlike the standard mc method, the confidence intervals of the
true option value are not easy to obtain as the Ẑi (i = 1, . . . , N)
are no longer independent. The numerical option values are biased
estimators of the true option value. For most financial problems of
practical interest, this bias is likely to be small. However, the bias
can be arbitrarily large in extreme circumstances. The indepen-
dence and bias in the moment matching methods make it difficult
to quantify the improvement in general analytical terms.

5 Numerical results

In this section we first report numerical results for valuing European
and American options based on the one-factor model for commodity
prices (1). The stochastic differential equation (2) is solved with step
size h = 0.05 by the trapezoidal method (5).

For the lsm method, the results are based on N = 50000 simu-
lations. N1 = 25000 pair simulations are used in the antithetic vari-
ates technique. For the control variates technique, N1 = 5000 simu-
lations are used for estimating parameter βmin, and the other N2 =
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Table 1: Option values of one-factor model by mc methods
Call option values

Euro. Error Amer. s.e.
lsm 1.6058 0.0036 1.6258 0.0102
avt 1.6136 0.0042 1.6275 0.0147
cvt 1.5980 0.0114 1.6252 0.0016

Put option values
Euro. Error Amer. s.e.

lsm 1.6179 0.0016 1.6292 0.0086
avt 1.6106 0.0057 1.6291 0.0121
cvt 1.6183 0.0020 1.6282 0.0036

45000 simulations are used for valuing option values. The analytic
European option values Ecall = 1.6094 and Eput = 1.6163 are used as
the control variates for the American options. For moment match-
ing method, M = 100 batches of simulations are used. Each batch
contains N = 500, 1000, 5000 or 10000 simulations.

Table 1 gives the European option values and errors, and Amer-
ican option values and the standard errors (s.e.) obtained by the
lsm method, the antithetic variates (avt) and control variates tech-
niques (cvt). Table 2 gives option values and errors obtained by
the moment matching method.

Next we discuss the two-factor model for commodity prices pro-
posed by Schwartz [10]. In this model, the first factor is used to
represent the spot price process S. Let x = ln(S) , this process is

dx = (r − σ2

2
− δ) dt + σ dW1(t) . (14)

where r is the short term interest rate, δ is the convenience yield
and σ is the volatility of the spot price S.
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Table 2: Values of one-factor model by moment matching method
Call option values

N Euro. Error Amer. s.e.
500 1.6062 0.0032 1.6737 0.0053
1000 1.6017 0.0077 1.6507 0.0040
5000 1.6081 0.0013 1.6315 0.0017
10000 1.6113 0.0019 1.6282 0.0013

Put option values
N Euro. Error Amer. s.e.
500 1.6113 0.0050 1.6623 0.0046
1000 1.6081 0.0082 1.6466 0.0028
5000 1.6121 0.0042 1.6298 0.0013
10000 1.6146 0.0017 1.6287 0.0011

Instead of the constant convenience yield, the second factor is the
instantaneous convenience yield of the spot energy and is assumed
to follow the mean reverting process

dδ = αδ(δ̄ − δ) dt + σδ dW2(t) . (15)

where αδ is the speed of adjustment, δ̄ is the long term mean of the
convenience yield, and σδ represents the volatility of the convenience
yield. With assumed constant interest rate r, futures and forward
energy prices are equal. Schwartz [10] derived an expression for
the futures price, and Clewlow and Strickland [4] gave formulas to
calculate the analytic European option values.

Instead of the explicit Euler method used in [4, 5], we use the
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trapezoidal method for solving the sdes (14) and (15):

xn+1 = xn +

(
r − σ2

2
− δn + δn+1

2

)
h + σ ∆Wn1 .

δn+1 = δn + αδ

(
δ̄ − δn + δn+1

2

)
h + σδ ∆Wn2 .

The increments of the Brownian motions, ∆Wn1 and ∆Wn2, are
assumed to have correlation coefficient hρSδ. For the generated
independent standard normal variates In1 and In2, the increments
of the Brownian motions can be represented by [5]

∆Wn1 =
√

∆tIn1 , ∆Wn2 =
√

∆t(ρSδIn1 +
√

1− ρ2
SδIn2) .

We can also use the Karhunen-Loeve expansion [6] to calculate the
correlated random variates.

For the standard mc method, the results are based on N =
50000 simulations. For the antithetic variates technique, N1 =
25000 pair simulations are used in valuation. In order to keep the
correlation property, the antithetic variates are ∆Ŵn1 = −∆Wn1

and ∆Ŵn2 = −∆Wn2 . For the control variates technique, N1 =
5000 simulations are used for estimating parameter βmin, and the
other N2 = 45000 simulations are used for valuing the European
and American option values. The analytic European option values
Ecall = 2.3701 and Eput = 2.3473 are used as the control variates
for the American option values. For moment matching method,
M = 100 batches of simulations are used, each batch contains
N = 500, 1000, 5000 or 10000 simulations.

Table 3 gives the European option values and errors, and Amer-
ican option values and the standard errors (s.e.) obtained by the
lsm method, the antithetic variates (avt) and control variates tech-
niques (cvt). Table 4 gives option values and errors obtained by
the moment matching method.
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Table 3: Option values of two-factor model by mc methods
Call option values

Euro. Error Amer. s.e.
lsm 2.3757 0.0056 2.3947 0.0157
avt 2.3692 0.0009 2.4080 0.0118
cvt 2.3696 0.0005 2.4061 9.3E-3

Put option values
Euro. Error Amer. s.e.

lsm 2.3358 0.0115 2.3622 0.0120
avt 2.3492 0.0019 2.3758 6.2E-3
cvt 2.3297 0.0176 2.3712 5.0E-3

Table 4: Values of two-factor model by moment matching method
Call option values

N Euro. Error Amer. s.e.
500 2.3655 0.0046 2.4775 9.5E-3
1000 2.3692 0.0009 2.4469 6.6E-3
5000 2.3680 0.0021 2.4057 2.8E-3
10000 2.3620 0.0081 2.3983 1.9E-3

Put option values
N Euro. Error Amer. s.e.
500 2.3456 0.0017 2.4178 6.3E-3
1000 2.3482 0.0009 2.3943 3.9E-3
5000 2.3469 0.0004 2.3768 1.7E-3
10000 2.3438 0.0035 2.3737 1.3E-3
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6 Conclusions

In this paper we have discussed two accuracy issues of the mc meth-
ods for valuing American options: the discretization error of numer-
ical methods and statistical error of the mc methods. In order to
reduce the discretization error, the trapezoidal method is applied
to the one-factor and two-factor models for commodity prices. For
valuing American options, variance reduction techniques are ap-
plied to reduce the statistical error. The following conclusions can
be made from the discussion in this paper.

1. Figure 1 shows that the convergence order of numerical meth-
ods is very important to the accuracy of option values. Numer-
ical methods with higher order and better stability properties
are strongly recommended in financial application.

2. From results in Tables 1 and 3, the control variates technique
is very effective for the commodity models, while the antithetic
variates technique is not recommended, especially for the one-
factor model.

3. Moment matching is effective for the lsm method. This ap-
proach is ideal for parallel computing. Unlike the valuation
for European options, the accuracy of the valuation for Amer-
ican options heavily depends on the number of simulations in
a trial. A large number of simulations in a trial is needed in
order to get an acceptable results.

4. Numerical results in Tables 2 and 4 suggest that the simulated
option values, obtained by the moment matching method, de-
crease monotonically to the true option values when the num-
ber of simulations in a trial become large. Thus the moment
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matching method is a bias high approach for commodity mod-
els. As the lsm method is a bias low method [9], these prop-
erties can be used to get more accurate results.

References

[1] P. Boyle, M. Broadie and P. Glasserman, Monte-Carlo
methods for security pricing, J. Economic Dynamics and
Control, 21, (1997), 1267–1321. C741, C748, C749

[2] M. Broadie and P. Glasserman, Pricing American-style
securities using simulation, J. Economic Dynamics and
Control, 21, (1997), 1323–1352. C741

[3] L. Clewlow and C. Strickland, Valuing Energy options in a
one factor model fitted to forward prices, Working paper,
University of Technology, Sydney, 1999. C743

[4] L. Clewlow and C. Strickland, A multi-factor model for
energy derivatives risk management, Working paper,
University of Technology, Sydney, 1999. C753

[5] L. Clewlow and C. Strickland, Energy Derivatives: Pricing
and Risk management, Lacima Publications, London, 2000.
C743, C744, C753, C754

[6] R. G. Ghanem and P. D. Spanos, Stochastic finite elements: a
spectral approach, Springer-Verlag, New York, 1991. C754

[7] J. C. Hull, Options, futures and other derivatives, 4th edn,
Prentice Hall, Upper Saddle River, NJ, 2000. C741



References C758

[8] P. E. Kloeden and E. Platen, Numerical solution of stochastic
differential equations, Springer-Verlag, Berlin, 1992. C742,
C743

[9] F. A. Longstaff and E. S. Schwartz, Valuing American options
by simulation: a simple least-squares approach, The Review of
Financial Studies, 14 (2001), 113–147. C741, C746, C747,
C757

[10] E. S. Schwartz, The stochastic behaviour of commodity
prices: implications for valuation and hedging, The Journal of
Finance, 52 (1997), 923–973. C742, C752, C753

[11] T. H. Tian, Implicit Numerical methods for stiff stochastic
differential equations and numerical simulations of stochastic
models, Ph.D thesis, Department of Mathematics, the
University of Queensland, Australia, August, 2001. C742

[12] T. H. Tian and K. Burrage, Implicit Taylor methods for stiff
stochastic differential equations, Applied Numer. Maths., 38
(2001), 167–185. C742


	Introduction
	Discretization errors
	The least-square Monte-Carlo method
	Variance reduction techniques
	Antithetic variates
	Control variates
	Moment matching methods

	Numerical results
	Conclusions
	References

