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Comparison of time domain numerical
solvers for the propagation of a Gaussian

pulse inside a rectangular waveguide

V. Vegh∗ I. W. Turner†

(Received March 2002; revised 5 June 2002)

Abstract

We analyse techniques for increasing the accuracy and ef-
ficiency of a finite-volume time-domain (fv-td) cell-centred
computational methodology. Various state-of-the-art spa-
tial and temporal discretisation methods employed to solve
Maxwell equations on multi-dimensional structured grid net-
works are investigated and the dispersive and dissipative er-
rors inherent in those techniques examined. Both staggered
and unstaggered grid approaches are considered. Staggered
and unstaggered Leapfrog and Runge-Kutta time integra-
tion methods are analysed by the use of Gaussian microwave
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pulse simulations. The implementation of typical electro-
magnetic boundary conditions is also deliberated. Finally,
a comparison of the classical finite-difference time-domain
(fd-td) method and fv-td numerical results for a standard
case study in rectangular waveguides allows the accuracy of
the developed methods to be assessed.

Contents

1 Introduction C782

2 Cell-centred finite-volume time-domain methods C786

3 Boundary conditions C792

4 Results C794

5 Conclusion C799

References C800

1 Introduction

Many computational methodologies have been developed to solve
Maxwell’s Equations for a variety of important applications in Sci-
ence and Engineering [1, 2, 3, 4]. Although microwaves are fre-
quently used for heating purposes, in this paper only microwave
pulses are analysed for the purpose of radar and signal processing.
Over the last two decades, research work in Computational Elec-
tromagnetics (cem) has seen the development of approximations
both for the integral and point forms of the governing Maxwell’s
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equations. In this work, the traditional staggered in time and space
fd-td [5] scheme is compared to a number of cell-centred finite-
volume time-domain approaches (ccfv-td). Most of the schemes
discussed here are formulated for generalised unstructured appli-
cations. However, this part of the research work is applied on a
simpler structured mesh case study, to allow the numerical results
to be compared directly to the fd-td solution.

Staggered schemes store approximations of the components of
the electromagnetic fields at different spatial locations within the
computational domain. For example, fd-td uses the Yee lattice
shown in Figure 1 to achieve that objective. In this case, the electric
and magnetic fields are staggered also in time in order to stabilise
the explicit time marching scheme. On the contrary, cell-centred
schemes store all of the electromagnetic fields at the same spatial
location (the cell centre). Typically, cell-centred schemes are much
easier to manage and implement (in terms of algorithm planning,
design and storage data structures) in comparison with their stag-
gered counterparts. Note however that even though the electric and
magnetic field components are evaluated at the same locations in-
side a given cell, it is still possible to stagger in time schemes which
are cell-centred in space. These are usually classified as staggered
and unstaggered leapfrog integrations in time, where the electric
and magnetic field components are either stored at different loca-
tions or at the same location in time, respectively. In this work,
third and fourth order Runge-Kutta (rk3 and rk4) methods are
implemented also on the cell-centred in space approach to analyse
their performance against the Leapfrog time marching schemes.

The problem studied here concerns a TE10 Gaussian pulse prop-
agated longitudinally in a typical rectangular waveguide. The end
of the waveguide is short-circuited, and the reflected waves are ab-
sorbed in the scattered field region of the waveguide. Initially, a
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Figure 1: A Yee cell. The components of the electric (E) and mag-
netic (H) fields are stored at different locations along the cell edges
and on the cell faces, respectively. For the fd-td algorithm, the
electric and magnetic fields are also staggered half a time step apart.
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detailed description of the mathematical formulation is provided for
the time domain cell-centred in space methods, and typical bound-
ary condition implementation for the conducting walls, input plane
and absorbing boundary layer is deliberated. In the scattered field
region of the waveguide, an existing Perfectly Matched Layer (pml)
staggered in space methodology [6] is adapted to the cell-centred ap-
proaches to absorb any reflected impinging waves in the scattered
field region of the waveguide.

Primarily, the study of a propagating Gaussian pulse in an empty
waveguide allows the performance of the different Maxwell’s equa-
tions time domain solvers to be analysed under free space conditions.
The pulse presents a good test for the fv-td methods, and high-
lights the evident dissimilarities between the different cell-centred
schemes, and shows also the differences when compared to the fd-
td method. Depending on the spatial and temporal discretisation
methods utilised, the schemes exhibit both dispersive and dissipa-
tive numerical errors. Dissipative errors cause the loss of wave am-
plitude, whereas dispersive errors affect the wave propagation speed.
These errors accumulate and need to be monitored for a number of
time steps.

This paper consists of five sections. In the next section the
mathematical formulation for discretising Maxwell’s equations us-
ing a finite-volume approach is presented, highlighting the differ-
ent cell-centred schemes. Then there follows a detailed discussion
of the electromagnetic boundary condition implementation. In the
proceeding section the results for the empty waveguide case study
are presented, and comparisons between the different methods are
provided via a number of graphical illustrations that elucidate the
dissipative and dispersive nature of the different schemes. Finally,
the conclusions of this work are summarised.
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2 Cell-centred finite-volume

time-domain methods

For numerical simulation using a finite-volume methodology, the
point form of the Maxwell’s equations (1) must be recast into a
discrete volumetric form:

∇× E = −∂B

∂t
, ∇×H =

∂D

∂t
+ J , (1)

B = µ0H , D = εE , J = σE , ε = ε0ε
′ , σ = ωε0ε

′′ ,

where, E is the electric field, H is the magnetic field, D is the elec-
tric flux, B is the magnetic flux, J is the current density, µ0 is the
permeability of free-space, ε0 is the permittivity of free-space, ε is
the permittivity, ε′ is the relative electric constant, ε′′ is the rela-
tive loss factor, σ is the electric conductivity and ω = 2πf where
f is the input frequency. Note that for most microwave heating
problems, the media are dielectric and current free. To arrive at
the volumetric form, we integrate over a discrete finite volume cell.
Unlike previous techniques where the integral was approximated us-
ing Stokes’ theorem [3, 7], hence the Divergence theorem is applied
to the volumetric representation to obtain a surface volume rela-
tionship between the electric and magnetic fields. The continuum
equation is then cast into discrete form

∂Bp

∂t
= − 1

∆V

∑
F∈ζp

n× EF ∆SF ,

∂Dp

∂t
=

1

∆V

∑
F∈ζp

n×HF ∆SF − Jp , (2)

where n is the unit outward normal through a face of a particular
cell (see Figure 2). In equation (2), ζp is the set of faces that con-
stitute the pth cell in a computational domain, and ∆SF and ∆V
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Figure 2: A general cell within the computational domain showing
the locations of the unknowns.

are the surface area of a particular face in ζp and the volume of
the pth cell, respectively. For the above discrete representation of
Maxwell’s equations (2), the surface integral approximation is sec-
ond order in space if EF and HF are the values at the midpoint
of the face. By visiting all of the cells that constitute the solution
domain, a system of ordinary differential equations (odes) results.
A number of methods are proposed to resolve the system of odes.

When approximating the differential operator in time, the dis-
cretisation can introduce either dispersion or dissipation errors [4].
Numerous techniques can be utilised to resolve (2) into time discrete
form. In [8] a number of approaches similar to the fd-td solution
methodology were investigated. For a function φ, equations (3)
and (4) are the staggered (slf) and unstaggered (ulf) leapfrog dis-
cretisations respectively, which are both O(∆t2) approximations:

∂φ

∂t

n+ 1
2

=
φn+1 − φn

∆t
, (3)
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∂φ

∂t

n

=
φn+1 − φn−1

2∆t
. (4)

Methods using the discretisations in (3) have been used to numer-
ically solve for the electromagnetic fields governed by Maxwell’s
equations. Using (3), the equations of (2) are written in discrete
form

H
n+ 1

2
p = H

n− 1
2

p − ∆t

µ0∆V

∑
F∈ζp

n× En
F ∆SF , (5)

En+1
p =

2ε− σ∆t

2ε + σ∆t
En

p −
2∆t

(2ε + σ∆t)∆V

∑
F∈ζp

n×H
n+ 1

2
F ∆SF , (6)

Similarly, (2) with the substitution of the discretisation in (4) be-
comes

Hn+1
p = Hn−1

p − 2∆t

µ0∆V

∑
F∈ζp

n× En
F ∆SF , (7)

En+1
p =

ε− σ∆t

ε + σ∆t
En−1

p − 2∆t

(ε + σ∆t)∆V

∑
F∈ζp

n×Hn
F ∆SF , (8)

Equations (5) to (8) require the approximation to the electric and
magnetic fields at the cell faces. It is possible to propose a number
of interpolating and extrapolating schemes to approximate these cell
face unknowns. On structured grids, the simplest way to approx-
imate the unknowns at a cell face is by averaging the cell values
about a particular face. Such a technique imposes second order in
space and time for (5–8). These particular finite volume methods,
Leapfrog discretisations, will be referred to as: slf (5–6), staggered
in time and unstaggered in space; and ulf (7–8), unstaggered in
space and unstaggered in time.



2 Cell-centred finite-volume time-domain methods C789

The averaging about a cell face demonstrates the simplest way to
approximate the terms inside the summations in (5) to (8). At the
pth cell in equation (2), Intensity-Vector Splitting (ivs) [4], which
is a concept that originated from Computational Fluid Dynamics
(cfd), is applied to replace the n × EF and n × HF terms. The
notion behind ivs is to include an extra term in the flux facial
expression to dampen any numerical oscillations, and to capture
any discontinuities (such as shocks and contact surfaces in cfd) in
the solution. At a cell face F , equations (9) and (10) depict the
derived form of the ivs result:

n×EF =
1

2
n×(E+

F +E−
F )+

1

2
n×([µc]+n×H+

F−[µc]−n×H−
F ) , (9)

n×HF =
1

2
n×(H+

F +H−
F )− 1

2
n×([εc]+n×E+

F−[εc]−n×E−
F ) , (10)

where, the wave speed is given by c = 1/
√

µε . It is evident from
equations (9) and (10) that the ± characteristics have to be ap-
proximated for a given cell face (see Figure 2). Note: the ivs result
cannot be implemented with (3) since the values for the magnetic
and electric fields are required at different time levels. For this rea-
son, time marching schemes that allow the electric and magnetic
field components to be located at the same instant in time have
to be employed. Numerical experimentation has shown that ivs
when incorporated with (4) incurs large errors due to the time dis-
cretisation of the electric and magnetic fields [4]. Therefore, higher
order time stepping methods are to be implemented. The following
third order Runge-Kutta (rk3) method was implemented with the
ivs scheme discussed above:

φn+ 1
3 = φn +

∆t

3

∂φ

∂t

n

, φn+ 2
3 = φn +

2∆t

3

∂φ

∂t

n+ 1
3

,
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φn+1 = φn +
∆t

4

(
3
∂φ

∂t

n+ 2
3

+
∂φ

∂t

n
)

. (11)

The outlined rk3 scheme is the one commonly used in cem, and
hence it was chosen to solve the equations of (2) that employ (9)
and (10). Also, a fourth order Runge-Kutta (rk4) method was
implemented:

φ̂n+ 1
2 = φn +

∆t

2

∂φ

∂t

n

,

φ̃n+ 1
2 = φn +

∆t

2

∂φ̂

∂t

n+ 1
2

,

φ̄n+1 = φn + ∆t
∂φ̃

∂t

n+ 1
2

, (12)

φn+1 = φn +
∆t

6

∂φ

∂t

n

+ 2
∂φ̂

∂t

n+ 1
2

+ 2
∂φ̃

∂t

n+ 1
2

+
∂φ̄

∂t

n+1
 .

Substituting the ivs result into (2) and by applying the rk solvers
of (11) and (12), the rk3-ivs and rk4-ivs techniques are obtained,
respectively. Note that equation (2) can be solved using the rk3
and rk4 solvers without the inclusion of damping, and this sug-
gestion is pursued later in this section. As shown in Figure 2, the
± characteristics for the ivs are required at a particular cell face.
Different strategies can be proposed and derived to approximate the
values at the cell face joining any two adjacent cells. The simplest
of these is the zeroth order substitution for an unknown ξ:

ξ−
p+ 1

2

= ξp , ξ+
p+ 1

2

= ξp+1 . (13)

Imposing the zeroth order approximation in rk3-ivs and rk4-ivs
leads to a first order in space and third order in time rk3-1-ivs
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numerical method, and a first order in space and fourth order in
time rk4-1-ivs numerical method respectively. On a structured
grid, a general linear extrapolation model that is second order in
space can also be derived:

ξ−
p+ 1

2

=
1

2
(3ξp − ξp−1) , ξ+

p+ 1
2

=
1

2
(3ξp+1 − ξp+2) . (14)

Using the approximations of (14), the rk3-2l-ivs and rk4-2l-
ivs methods are developed, which are simultaneously the third and
fourth order in time and second order in space linear extrapola-
tion numerical schemes. By using discrete data points within the
vicinity of the cell faces, it is possible to find least squares gradient
approximations at the cell centres [9]. Equation (15) is a truncated
representation of the Taylor series:

δr · ∇ξ(r) ≈ ξ(r + δr)− ξ(r) . (15)

The above formula yields a system of linear equations that is cast
into matrix form as A · ∇ξp = d . The gradient that minimises
‖A · ∇ξp − d‖2 with respect to the inner product on Rk is obtained
by solving the normal equations. The value of k equals the number
of neighbouring nodes utilised to obtain the gradient at the pth cell.
In this paper, the gradients were constructed using only the adjacent
cells of ζp (that is k = 6). As a consequence, the gradients of the
electric and magnetic fields are used to approximate the ± char-
acteristics at the cell faces. Using these gradients, equation (16)
establishes a second order approximation for the ± states:

ξ−
p+ 1

2

= ξp + δ′ · ∇ξp , ξ+
p+ 1

2

= ξp+1 + δ′′ · ∇ξp+1 . (16)

In equation (16), δ′ and δ′′ are the vectors from the nodes p to p+ 1
2

and p + 1 to p + 1
2
, respectively (see Figure 2). Subsequently, the

methods that employ (16) are classified as rk3-2g-ivs and rk4-2g-
ivs, depending on the time integration. The various ivs methods
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can also be implemented without flux splitting and are referred to
here as the rk3(rk4)-2l and rk3(rk4)-2g methods, which are
the third (fourth) order linear extrapolation and the spatial gradient
approximations, respectively.

3 Boundary conditions

In this section, the perfectly conducting wall, the incident field and
absorbing boundary conditions are treated. On a perfectly conduct-
ing wall, the following conditions need to be satisfied [10]:

n× E = 0 , n ·H = 0 . (17)

On structured grids, (17) implies that the tangential components
of the electric field at a perfectly conducting wall boundary are
zero. Equation (17) also entails that the magnetic components that
are normal to that conducting wall are continuous across that wall.
For the implementation of the incident field boundary condition, a
classical waveguide is depicted in Figure 3. Typically, a fictitious
dielectric is introduced inside the scattered region to absorb any
reflected backward travelling waves. In Figure 3 it is assumed that z0

represents the location where the incident field I is located. The
scatter field S is the region between 0 and z0, and the full field F
occupies the region between z0 and d. The scattered and full field
regions have length l1 = z0 and l2 = d − z0 , respectively. At the
input plane, the incident field is introduced using F = S + I and a
continuous TE10 incident field is implemented as an input boundary
condition. Across the input plane, the scattered and full fields are
computed according to the following incident field assumptions:

EI
y = E0 sin

πx

a
cos(ωt− β0z0) , (18)
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Figure 3: A waveguide with incident and absorbing boundary con-
ditions.

HI
x = − β0

ωµ0

E0 sin
πx

a
cos(ωt− β0z0) , (19)

HI
z = − π

ωµ0a
E0 cos

πx

a
sin(ωt− β0z0) , (20)

β0 =

√
ω2µ0ε0 −

(π

a

)2

.

In Figure 3, an absorbing boundary layer is represented inside the
scatter field region of the waveguide. A previously proposed Per-
fectly Matched Layer (pml) boundary condition [6] has been used to
absorb any waves inside the scattered filed region of the waveguide.
In this work, this boundary condition has been adapted for the use in
the cell-centred schemes discussed in the previous section. The pml
boundary condition is based on matching the impedance of the ab-
sorbing medium to the impedance of free-space. The pml boundary
conditions are based on the following augmented Maxwell’s equa-
tions:

∂B

∂t
+ J∗ = ∇× E ,

∂D

∂t
+ J = −∇×H , (21)
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where
J∗ = σ∗H , σ∗ =

µ0

ε0

σ . (22)

By satisfying (22), the impedance of the pml equals that of free-
space, and no reflections occur. From the reformulation of the
Maxwell’s equations, (1) is replaced by (21) in the discretisations,
and new discrete in space equations are obtained for the numerical
simulation of the electromagnetic behaviour within the absorbing
material. Specific implementation details of the pml absorber will
be outlined in future work, which will demonstrate the cell-centred
finite-volume time-domain methods for the purpose of microwave
heating.

4 Results

The waveguide of Figure 3 is used as a case study to numerically
simulate a Gaussian microwave pulse inside the apparatus. The
full field region of the waveguide is truncated via a short-circuit,
and the scattered field region employs the Petropoulos type pml
boundary condition to absorb any backward travelling waves. The
dimension of the waveguide is a = 0.1m, b = 0.05m and d =
0.4m. At z0 = 0.1m, the incident plane is excited using a TE10

2.45GHz electromagnetic wave, with an average input power of 1W.
The TE10 wave is multiplied by a Gaussian function to propagate
a microwave pulse inside the waveguide:

Gauss(t) = exp

[(
−2.5t

T
− 1

)2
]

. (23)

In equation (23), T represents the wave period inside the waveguide.
The instantaneous electromagnetic fields were monitored over two
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periods. The domain of the waveguide is discretised into 54, 000
(30× 15× 120) Cartesian cells. The time stepping of the numerical
solvers is constrained by the relationship:

∆t =
0.9

cmax

√
1

δx2 + 1
δy2 + 1

δz2

, (24)

where, cmax is the maximum expected wave speed in the waveguide,
and δx, δy and δz are the minimum mesh dimensions in the x, y
and z coordinate directions [2]. Figures 4 and 5 show the results for
the simulated TE10 Gaussian pulse using the numerical techniques
discussed throughout the previous sections. Since it is well known
that the fd-td scheme is highly accurate, all of the established
cell-centred numerical techniques have been compared to the fd-
td method to demonstrate the relative accuracy of each scheme. It
is evident from the figures that the unstaggering of the unknowns
introduces errors, and hence, higher order time marching schemes
are required to better capture the fd-td solution.

In the proceeding paragraphs, specific comments regarding the
accuracy of the schemes presented in Section 2 and exhibited in Fig-
ures 4 and 5 are given. The introduction of intensity vector splitting
smooths the noise that is apparent in the ulf, slf and rk3(rk4)-
2g techniques (see Figures 4a, 4b, 4c and 5c). It is well known
that using higher order time integration techniques requires more
computational effort to resolve the unknowns, and consequently, the
techniques that employ ivs with rk3 and rk4 time integration are
more computationally intensive than the fd-td method. In this
work, only the accuracy of the different cell centred schemes are
compared, an analysis of the times to compute the numerical so-
lutions has been left for future investigations. See in the figures
that the methods that make use of the gradients to approximate
the ± characteristics at the cell faces can capture the pulse as well
as any of the other cell-centred numerical schemes discussed (see
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Figures 4c-d and 5c-d). Note that the results or rk3(rk4)-2l-ivs
have not been shown, since they were comparable to those obtained
using rk4-2g-ivs. In the numerical solutions it was observed also
that results for rk3-2l were comparable to the rk4-2l scheme, and
as a consequence, only the rk4-2l results are illustrated.

From the figures it is evident that the adaptation of ivs in the
schemes (see Figures 4d, 5b and 5d) smooth the results; although
note that the rk4-2l scheme has apparent smoothing also. This
is because the approximation uses a second order linear extrapola-
tion, which removes any rapid changes or oscillations in the numer-
ical time marching. In Figure 4a observe that the ulf scheme is
conditionally unstable [4]. Figure 5b highlights that the rk4-1-ivs
scheme, which utilises the zeroth order extrapolation for the ± char-
acteristics, is highly dissipative as observed by Liu [4]. Furthermore,
the first order spatial discretisation inadequately captures the be-
haviour of the solution. However, note that such methods are able to
capture the wave phase, but the amplitude is smeared considerably.

In Figures 4c-d and 5c-d observe that the numerical solution is
out of phase with the fd-td benchmark solution. In Figure 5a the
rk4-2l scheme, which is suitable only for structured grids, appears
to capture the wave phase. These findings are an artifact of the spa-
tial discretisation, and to further investigate how the phase errors
could be reduced, higher order spatial discretisations would have
to be adapted to the previously outlined cell-centred schemes. The
ulf, slf, rk3(rk4)-2l and rk4-1-ivs techniques exhibit substan-
tial wave front amplitude errors (see Figures 4a-b and 5a-b). For
the rk3(rk4)-2l method this is because of the grid used in the ap-
proximation of the cell face unknowns is four grid cells wide. Hence,
as the incident field is propagated, the apparent noise due to the
introduction of the microwave energy is propagated with the pulse.
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Figure 4: A two period pulse inside a TE10 waveguide showing
time versus the y-coordinate of the Electric field (V/m); (a) ulf;
(b) slf; (c) rk3-2g and (d) rk3-2g-ivs.
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Figure 5: A two period pulse inside a TE10 waveguide showing
time versus the y-coordinate of the Electric field (V/m); (a) rk4-
2l; (b) rk4-1-ivs; (c) rk4-2g and (d) rk4-2g-ivs.
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5 Conclusion

Cell centred time domain solvers for the Maxwell’s equations were
investigated and a number of solution strategies have been applied
to resolve the Gaussian pulse waveguide study. The governing equa-
tions were discretised using non-traditional techniques to obtain a
surface-volume representation that was solved numerically using a
number of different numerical strategies. The fd-td method is very
accurate, but it is not easily migrated to unstructured domains. A
number of cell-centred schemes have been formulated for unstruc-
tured domains, but were implemented here only on structured grids
so that they could be compared to the classical fd-td method. Fur-
ther research in the area will demonstrate how these schemes can
be implemented on completely unstructured grids.

Leapfrog staggered (slf) and unstaggered (ulf) time integra-
tion techniques were used to time march the discrete surface-volume
representation of Maxwell’s equations. When intensity vector split-
ting (ivs) was introduced into the rk3(rk4)-2g schemes, the re-
sults appeared to be smooth, and the evident noise in the schemes
was removed. This reduction in noise was due to the damping that
these techniques induced in the numerical solution. The work clearly
showed that time domain cell-centred Maxwell’s equations numer-
ical solvers have produced reasonable results for the slf scheme.
It was observed also that the Runge-Kutta based methods, with
and without intensity vector splitting, produced results that were
comparable to the classical fd-td method.

For the purpose of microwave heating, future research will anal-
yse in more detail the effect that a lossy material can have on the
electromagnetic phenomenon evolving on the grid. In that work,
more rigorous tests are to be conducted regarding dispersion and
dissipation errors.
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