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Abstract

Zhang et al. [IMA J. Numer. Anal., 26 (2006) 629–640] proposed
a modified Polak–Ribière–Polyak method for non-convex optimiza-
tion and proved its global convergence with some backtracking type
line search. We further study its convergence properties. Under the
standard Armijo line search condition, we show that the modified Polak–
Ribière–Polyak method has better global convergence property and
locally R-linear convergence rate for non-convex minimization. Some
preliminary numerical results are also reported to show its efficiency.
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1 Introduction

Consider the problem
min f(x), x ∈ Rn, (1)

where f : Rn → R is a continuously differentiable function and its gradient
g(x) , ∇f(x) is available.

Zhang et al. [6] presented the following modified Polak–Ribière–Polyak (mprp)
method for solving the general unconstrained optimization problem (1). We
denote gk = ∇f(xk), then the scheme of the mprp method is

xk+1 = xk + αkdk , k = 0, 1, . . . , (2)

where αk is a step size and the search direction dk is generated by the mprp
formula

dk =

{
−gk , if k = 0 ,

−gk + βprp
k dk−1 − θkyk−1 , if k > 1 ,

(3)

βprp
k =

gTkyk−1

‖gk−1‖2
, θk =

gTkdk−1

‖gk−1‖2
, yk−1 = gk − gk−1 . (4)
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An important property of the mprp method is that

gTkdk = −‖gk‖2, (5)

which is independent of line searches used and the convexity of the objec-
tive function f. Moreover, the mprp method reduces to the standard prp
method [4, 5] when the exact line search is used. Zhang et al. [6] proved that
the mprp method converges globally for non-convex optimization in the sense
that

lim inf
k→∞ ‖gk‖ = 0

by the use of the backtracking type line search, that is, αk = max{ρj | j =
0, 1, 2, . . .} satisfies

f(xk + αkdk) 6 f(xk) − δα
2
k‖dk‖2, (6)

where ρ ∈ (0, 1) and δ > 0 are constants.

Since the mprp method was proposed, it has attracted much attention. Li
and Tian [2] showed n-step quadratic convergence of the mprp method with
a restart strategy for strongly convex objective functions using the Armijo or
Wolfe line search. Zhu, Xiao and Wu [7] applied the mprp method to solving
large sparse signal recovery problems and obtained good numerical results.
Li [1] extended the mprp method to solving non-negatively constrained
optimization problems.

We further study the convergence properties of the mprp method for non-
convex minimization with the following standard Armijo line search. Let
ρ, δ ∈ (0, 1), τ > 0 and σk = τ|gTkdk|/‖dk‖2, compute αk = max{σkρ

j | j =
0, 1, 2, . . .} such that

f(xk + αkdk) 6 f(xk) + δαkg
T
kdk . (7)

Section 2 establishes the strongly global convergence property of the mprp
method and show its locally R-linear convergence rate when the line search (7)
is used. Section 3 reports some numerical experiments to show the performance
of the mprp method with the line searches (6) and (7) for several test problems.
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2 Convergence properties

To begin with, let us define the level set

Ω = {x | f(x) 6 f(x0)}. (8)

We know that xk ∈ Ω for all k > 0 since gTkdk = −‖gk‖2. We make the
following standard assumptions to ensure strongly global convergence of the
method.

Assumption 1. 1. The level set Ω defined by (8) is bounded.

2. In some neighbourhood N of Ω, the gradient is Lipschitz continuous;
that is, there exists a constant L > 0 such that

‖g(x) − g(y)‖ 6 L‖x− y‖, for all x,y ∈ N . (9)

Under Assumption 1, the following result shows that the step size αk is
bounded below.

Lemma 2. Let the sequence {xk} be generated by the mprp method with the
line search (7). Then there exist two positive constants c1 and c2 such that

αk > c1|g
T
kdk|/‖dk‖2 > c2 , for all k > 0 . (10)

Proof: If αk 6= σk = τ|gTkdk|/‖dk‖2, then α ′k = αk/ρ does not satisfy the
line search (7), namely,

f(xk + α ′kdk) > f(xk) + δα
′
kg

T
kdk . (11)

By the mean value theorem and (9),

f(xk + α ′kdk) − f(xk) = α ′kg
T
kdk + α ′k

(
g(xk + τkα

′
kdk) − gk

)T
dk

6 α ′kg
T
kdk + Lα ′2k ‖dk‖2,
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where τk ∈ (0, 1). This and (11) mean that the first inequality in (10)
holds with c1 = min{τ, ρ(1 − δ)/L}. By the line search (7), we know that
αk 6 σk = τ|gTkdk|/‖dk‖2, which together with (5) implies that

αk‖dk‖2 6 τ|gTkdk| = τ‖gk‖2. (12)

Hence, from (3), (4), (9) and (12),

‖dk‖ 6 ‖gk‖+
2L‖gk‖αk−1‖dk−1‖2

‖gk−1‖2
6 (1+ 2Lτ)‖gk‖. (13)

It follows from (13) and (5) that the second inequality in (10) holds with
c2 , c1/(1+ 2Lτ). ♠

Then we obtain the following strongly global convergence result for the mprp
method.

Theorem 3. Consider the mprp method with the line search (7):

lim
k→∞ ‖gk‖ = 0 . (14)

Proof: Since {f(xk)} is decreasing and bounded from below, from (7) and (5),
we know limk→∞ αk‖gk‖2 = 0 , which together with (10) yields (14). ♠

Theorem 3 shows that every limit point of the sequence {xk} is a stationary
point of f. Moreover, if the Hessian matrix at one limit point x∗ is positive
definite, which means that x∗ is a strict local optimal solution of the prob-
lem (1), then the whole sequence {xk} converges to x∗ since (5) implies that
‖xk+1 − xk‖ = αk‖dk‖ 6 τ‖gk‖2/‖dk‖ 6 τ‖gk‖ → 0 . Hence, in the local
convergence analysis, we assume that the whole sequence {xk} converges.

The following result shows that the mprp method with the line search (7)
converges R-linearly.
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Theorem 4. Let f be a twice continuously differentiable. Consider the mprp
method with the line search (7). Suppose that {xk} converges to x∗, where
g(x∗) = 0 and ∇2f(x∗) is positive definite. Then there exist constants c3 > 0
and r ∈ (0, 1) such that

‖xk − x∗‖2 6 c3rk. (15)

Proof: Since ∇2f(x∗) is positive definite, then f is uniformly convex in some
neighbourhood N1 of x∗ and there exist two positive constants m and M
such that

m‖x− x∗‖2 6 ‖g(x)‖2 6M‖x− x∗‖2, (16)
m‖x− x∗‖2 6 f(x) − f(x∗) 6M‖x− x∗‖2. (17)

Without loss of generality, we assume that {xk} ⊆ N1 . By (7), (5) and (10),

f(xk+1) 6 f(xk) + δαkg
T
kdk = f(xk) − δαk‖gk‖2 6 f(xk) − δc2‖gk‖2.

This together with (16) and (17) shows that

f(xk+1) − f(x
∗) 6 (1− δmc2/M)

[
f(xk) − f(x

∗)
]
6 · · · 6 rk+1

[
f(x0) − f(x

∗)
]
,

where r = 1 − δmc2/M < 1 . This and (17) yield (15) with constant
c3 = (f(x0) − f(x

∗))/m . ♠

3 Numerical experiments

This section reports some numerical experiments on the mprp method with
the line searches (6) and (7), that is,

• mprp1: the mprp method with the line search (6). We set parameters
ρ = 0.12 and δ = 10−3;
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• mprp2: the mprp method with the line search (7). We set parameters
ρ = 0.12 , δ = 10−3 and τ = 3 .

All codes were written in Matlab 7.4. We stopped the iteration if the total
number of iterations exceeds 500 or ‖gk‖ < 10−4. We tested the following
three problems [3] with the form f(x) = 1

2

∑m
i=1 f

2
i(x).

1. The extended Rosenbrock function: m = n , n is an even integer and

f2i−1(x) = 10
(
x2i − x

2
2i−1

)
, f2i(x) = 1− x2i−1 , i = 1, 2, . . . ,n/2 .

2. The trigonometric function: m = n and

fi(x) = n−

n∑
j=1

cos xj + i(1− cos xi) − sin xi , i = 1, 2, . . . ,n .

3. The Broyden tridiagonal function: m = n and

fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1 , i = 1, 2, . . . ,n ,

where x0 = xn+1 = 0 .

Tables 1–2 lists the numerical results for the mprp1 and mprp2 methods
on the three test problems with different initial points and sizes, where “P”
and “Init” stand for the problem and the initial point, respectively; “Iter” is
the total number of iterations; “fcnt” indicates the total number of function
evaluations; “Time” is the cpu time in seconds and “−” means that the
method failed to find the solution within 500 iterations. In the last row of
Table 2, “Best” means the number of test problems that one method wins
over the other method on the number of iterations and function evaluations,
and the cpu time.

Tables 1–2 show that both methods performed well and the mprp2 method
seems more efficient since it requires less computations on function evaluations
for most problems.
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Table 1: First group of test results of the mprp1 and mprp2 methods, where
10−2 means that the initial point x0 = 10−2 ∗ ones(n,1).

mprp1 mprp2
P Init n Iter fcnt Time ‖gk‖ Iter fcnt Time ‖gk‖
1 10−2 10 78 268 1.4 9× 10−5 72 223 1.5 6× 10−5

50 78 266 1.4 8× 10−5 62 183 1.3 4× 10−5

100 71 243 2.0 5× 10−5 73 219 1.5 9× 10−5

200 95 328 2.0 3× 10−5 81 232 1.8 7× 10−5

500 78 262 3.0 8× 10−5 86 259 3.2 4× 10−5

1000 86 297 8.1 3× 10−5 87 257 7.6 1× 10−5

2000 97 336 28.0 7× 10−5 78 223 20.3 6× 10−5

1 10−4 10 74 249 1.3 8× 10−5 71 188 1.6 8× 10−5

50 74 248 7.1 9× 10−5 64 173 1.6 9× 10−5

100 74 251 2.8 5× 10−5 81 223 1.9 6× 10−5

200 84 282 3.7 5× 10−5 83 250 2.1 6× 10−5

500 66 225 3.0 4× 10−5 72 190 3.1 7× 10−5

1000 76 255 7.1 9× 10−5 87 238 9.0 7× 10−5

2000 94 316 27.1 6× 10−5 86 243 23.8 6× 10−5

2 0.1 10 134 135 1.3 9× 10−5 57 74 1.4 8× 10−5

50 27 32 2.0 4× 10−5 34 49 1.6 7× 10−5

100 14 22 1.6 9× 10−5 36 58 1.6 7× 10−5

200 19 26 1.8 8× 10−5 44 82 2.5 6× 10−5

500 13 23 2.2 7× 10−5 − − − 9× 106

2 1 10 31 37 1.2 9× 10−5 39 72 1.4 9× 10−5

20 42 49 1.4 9× 10−5 32 67 1.5 7× 10−5

50 23 39 1.7 5× 10−5 40 62 1.8 8× 10−5

100 − − − 1× 105 91 275 3.1 8× 10−5

2 10 10 135 147 2.8 9× 10−5 42 75 1.9 7× 10−5

20 61 83 1.5 9× 10−5 71 110 1.5 8× 10−5

50 29 68 1.6 8× 10−5 48 95 1.7 7× 10−5

100 − − − 1× 105 117 410 2.5 9× 10−5
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Table 2: Second group of test results of the mprp1 and mprp2 methods,
where 10−2 means that the initial point x0 = 10−2 ∗ ones(n,1).

mprp1 mprp2
P Init n Iter fcnt Time ‖gk‖ Iter fcnt Time ‖gk‖
3 −10 10 149 416 1.4 7× 10−5 84 215 1.4 9× 10−5

50 184 519 6.9 8× 10−5 80 212 1.7 8× 10−5

100 114 324 1.7 9× 10−5 75 200 2.0 9× 10−5

200 209 583 1.9 9× 10−5 67 186 1.7 8× 10−5

500 233 656 5.6 8× 10−5 61 166 2.9 8× 10−5

1000 130 369 9.4 7× 10−5 61 169 6.5 7× 10−5

2000 121 347 29.7 9× 10−5 61 169 29.6 7× 10−5

3 −1 10 53 152 1.3 9× 10−5 49 166 1.6 8× 10−5

50 100 281 1.5 7× 10−5 52 172 1.7 6× 10−5

100 91 256 1.7 9× 10−5 52 174 1.7 9× 10−5

200 104 295 1.9 9× 10−5 52 177 1.7 7× 10−5

500 99 280 3.2 9× 10−5 50 169 3.8 7× 10−5

1000 146 407 10.6 8× 10−5 56 194 6.7 9× 10−5

3 0 10 79 224 2.3 7× 10−5 62 202 1.6 7× 10−5

50 153 428 2.3 9× 10−5 181 545 2.0 9× 10−5

100 423 1168 2.1 9× 10−5 229 692 1.9 8× 10−5

200 393 1088 2.7 9× 10−5 323 953 2.4 9× 10−5

300 − − − 1× 10−3 441 1314 5.3 7× 10−5

Best 15 11 18 30 34 27
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4 Conclusions

We proved that the mprp method has the strongly global convergence and
locally R-linear convergence rate for non-convex optimization, which improves
the existing results on the mprp method. Numerical results showed that the
mprp method with the standard Armijo line search is efficient.
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