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Numerical modelling of drifting flame tubes
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Abstract

Stationary, isolated flame tube and stationary, multiple flame tubes
are found both experimentally and numerically in a counterflow burner.
For some flames established experimentally, moving multiple flame
tubes are observed. We examine numerically the effect of placing two
isolated flame tubes in close proximity to each other. We find that
the influence of one flame tube on the other is to cause the tubes to
move and drift apart.
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1 Introduction

The ultimate aim of this joint project was to model numerically the drifting
apart of flame balls in micro-gravity. Some remarkable observations have
been recorded in micro-gravity experiments pioneered by Ronney [4]. These
experiments revealed that when several flame balls were created simultane-
ously, they very slowly drift apart. As a first step in this project we investi-
gate a two dimensional flame which has some similarities to three dimensional
flame balls, namely flame tubes in a counterflow burner.

The existence of multiple and isolated, stationary flame tubes in a coun-
terflow for certain fuel mixtures was shown numerically for non-premixed
combustion [5] and was observed for premixed combustion [3]. The experi-
ments also showed that flame tubes may drift in the combustion chamber.
More recently, stationary flame tubes at unit Lewis number have been mod-
elled in the presence of heat loss for premixed combustion [1]. Moreover,
Daou et al. [1] also predicted moving, isolated flame tubes. Similar results
for non-premixed flow were were also predicted by Daou et al. [2]. The two
dimensional calculations described here consider numerically what happens
when one flame tube is placed in close proximity to another in a counterflow.

We consider a simple chemical model of a premixed flame in a counterflow
burner. A typical burner is illustrated schematically in Figure 1. A mixture
of fuel and oxidant enter the burner through the injectors, gases exit the
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Figure 1: Schematic representation of a counterflow burner.

burner at the sides. In the mathematical model of a counterflow burner we
choose the x-coordinate along the plates, the y-coordinate between the plates
and the z-coordinate across the plates with origin in the centre of the burner.
Thus gases enter from the ±y direction, exit in the ±z direction and there
is no flow in the x direction. When a spark is ignited in the burner a flame
can be established. This flame lies close to the y = 0 plane and, for some
distance in the z dimension close to the central plane z = 0 , is essentially
independent of z. For most flames established in the burner the flame fills the
burner in the x dimension and is independent of x. Such a flame is essentially
one dimensional, that is it depends only on y. For certain mixtures of fuel
and for high enough strain rate a single cellular flame or multiple cellular
flames become established in the burner rather than a single flame filling the
burner. This flame, for small z, is independent of the z dimension and is two
dimensional depending on x and y coordinates only. It is called a flame tube.
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2 The governing equations

The combustion process is represented by the one-step irreversible reaction
of the form

Fuel −→ Products + Heat.

The reaction rate ω defined as the mass of fuel consumed per unit volume
and unit time is assumed to follow the Arrhenius law of the form

ω = ρYFB exp(−E/RT ),

where for some constant B the parameters ρ, T , YF, E and R represent
respectively the density, the temperature, the mass fraction of the fuel, the
activation energy and the universal gas number. We assume a constant
density and that the heat capacity cp, the thermal diffusivity DT, and the
diffusion coefficient DF are all constant. The velocity field in the counterflow
burner has components (0,−ay, az), where a is the strain rate. The general
non-adiabatic time dependent equations for combustion on the central plane
is independent of z close to z = 0 and are

∂YF
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− ay∂YF
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= DF

(
∂2YF

∂x2
+
∂2YF

∂y2

)
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where T0 is the temperature of the unburnt gas and Q the heat released per
unit mass of fuel consumed in unit time. The temperature Tb of the burnt
gases is

Tb = T0 +
QYF0

cp
,

where YF0 is the mass fraction of the fuel in the fresh mixture. We define
the following rescaled variables:

x′ =
x

L
, y′ =

y

L
, t′ =

t

t0
, F ′ =

YF

YF0

, T ′ =
T − T0

(Tb − T0)
.
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We choose L as the thickness of the thermal mixing layer, thus

L =
√

2DT/a ,

and define the Zeldovich number as

β =
E

R

(
Tb − T0

T 2
b

)
.

We define the Damköhler number δ so that δβ2 = 2
a
B exp [−E/(RTb)] and

note that δ is inversely proportional to the strain rate a. Finally we choose t0
so that at0 = 2 then
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where αh = (Tb − T0)/Tb . Finally, removing the primes we have the differ-
ential equations

∂F
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)
+ δβ2FT β , (4)

in which the Lewis number Le = DT/DF , αh has been approximated by 1
and exp (β(T − 1)) by T β [5]. Dirichlet, cold boundary conditions, namely
T = 0 and F = 1 , are imposed at y = ±Ym and Neumann, independent of
x boundary conditions ∂F

∂x
= 0 and ∂T

∂x
= 0 are imposed at x = ±Xm . In all

the calculations we used the Zeldovich number β = 10 .

These equations have the cold solution F = 1 , T = 0 for all time but for
certain combinations of Le and δ they also have a stationary solution indepen-
dent of x, namely the one dimensional flame in the burner described above.
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For a given Lewis number, there is a minimum Damköhler number (that is
a maximum strain rate) for which combustion can take place. This mini-
mum Damköhler number is called the quenching Damköhler number. When
the Lewis number is significantly less than 1, then close to the quenching
Damköhler number we find there are cellular flames. Thus we also find iso-
lated and multiple stationary flame tube solutions of equations (3) and (4)
for certain combinations of Lewis and Damköhler numbers.

To study drifting flame tubes, we first compute an isolated, stationary
flame tube in a rectangular region in x and y. We then place two flame
tubes close together and carry out a time integration of the time dependent
equations (3) and (4).

3 Numerical method and grid definition

The burning solutions of equations (3) and (4) are symmetric with respect
to y. Thus solutions of these equations were computed in the computational
region −Xm ≤ x ≤ +Xm and 0 ≤ y ≤ Ym subject to the boundary conditions

1. T = 0 and F = 1 on y = Ym ,

2. ∂F
∂x

= 0 and ∂T
∂x

= 0 on x = −Xm and x = Xm ,

3. symmetry conditions ∂F
∂y

= 0 and ∂T
∂y

= 0 on y = 0 .

The values of Xm and Ym were chosen to be sufficiently large so that the
boundary has negligible effect on the combustion calculations.

For this two dimensional problem the far field effects are not great since
F and T approach their far field values exponentially. Thus a large re-
gion exterior to the flame tube was not necessary. At Lewis number = 0.4
flame tubes exist for Damköhler numbers in the range, 0.011 < δ < 0.026 .
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Figure 2: Rate of reaction contours for the stationary, premixed flame tube,
Le 0.4 , δ = 0.02 , β = 10 .

Choosing δ = 0.02 the flame tube was located in −0.74 < x < 0.74 and
−0.32 < y < 0.32 , see Figure 2. The boundary of the flame tube was taken
to be the position of the maximum rate of reaction.

The computational domain chosen had values Xm = 20 and Ym = 5 , the
larger value for Xm being chosen to allow for flame tubes to drift. The grid
used was uniform in the x direction with hx = 0.02 and was uniform for
0 ≤ y ≤ 0.5 , with hy = 0.02 . It was non-uniform for 0.5 ≤ y ≤ 5.0 with

h = h
(i)
y for i = 1, 2, . . . , 25 with h

(1)
y = hy and h

(i)
y = λ+h

(i−1)
y , λ = 0.01333 .

Thus we used a 2000×50 rectangular grid.
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The stationary solution was computed by approximating the stationary
form of equations (3) and (4) using a Galerkin finite element method with
bilinear quadrilateral elements. The discrete equations were solved by New-
ton’s method. The time dependent equations were also approximated by the
Galerkin finite element method and the discrete system of first order ordinary
differential equations were integrated using a very simple Euler code.

4 Numerical results for two flame tubes

To model the effect of two flame tubes, 900 grid lines parallel to the y axis
were removed from the left of the grid (x < 0) and an equal number added
on the right of the grid. The initial solution for the time integration was
the stationary solution at the remaining grid points augmented with a cold
solution (F = 1, T = 0) at the new grid points. The Neumann boundary
condition on the left of the grid now acted as a symmetry boundary condition
between two flame tubes whereas the Neumann boundary condition on the
right represented the far field condition for large x. It was far enough from
the flame tube to have negligible effect on its behaviour. A time integration
was then performed.

We observed that the temperature at the mid point between the flame
tubes initially increased while the flame tubes shrank in size and began to
drift apart. Once this initial phase had passed, the integration settled down
the flame tubes drifted apart with:

1. a speed that fairly rapidly approached, but did not reach, zero, see
Figure 3;

2. the temperature at the mid point between the flame tubes decreasing
as the tubes became further apart;
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Figure 3: The velocity of the drift-
ing flame tubes plotted against sep-
aration.
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Figure 4: The length of the drift-
ing flame tubes plotted against sep-
aration.

3. the size of the flame tube increasing and approaching the size of the
stationary flame tube, see Figure 4 which shows how the length of the
flame tube in the x direction approached the length of the stationary
flame tube.

Indeed, summing up these results, the two flame tubes behaved exactly
as expected with the tubes moving into the fresh fuel mixture rather than
competing with each other for the fuel mixture between the the two tubes.
Moreover, as the flame tubes moved further apart their solutions were con-
verging to that of the isolated flame tube.
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5 Conclusion

The numerical solutions presented here verified the expected drifting apart of
flame tubes into regions of greater fuel concentration. It proved disappointing
that we were unable to obtain similar results using one step chemistry to
model flame balls drifting apart. These results will be described in a second
paper together with a more sophisticated representation of the chemistry
that does give flame balls moving apart.
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