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Abstract

The numerical solution of variational problems is usually achieved
by numerical solution of the Euler—Lagrange differential equations or
by Rayleigh—Ritz direct methods. In 1975, Chen and Hsiao showed
how Walsh functions could be used in a direct method to solve several
model variational problems. This Rayleigh—Ritz method was general-
ized by Sloss and Blyth in 1998. In 2004, Hsiao modified the Walsh
function method to provide a Haar wavelet direct method and illus-
trated how this could be used for the solution of a few model problems.
We extend this by applying Alpert multiwavelets to the direct solution
of variational problems. Alpert multiwavelets were developed for the
numerical solution of integral equations and provide a generalization
of Haar wavelets. Alpert multiwavelets have the advantage of being
expressible as simple polynomials over disjoint subintervals allowing
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for ease of computation. The method is applied to an example which
allows comparisons with the results for Haar wavelets to be made.
Some convergence results are given.

Contents
1 Introduction CR821
2 Alpert multiwavelets C822
2.1 Haar wavelets . . . . . . . . ... CR22
2.2 Alpert wavelets . . . . . ... ... ... C824
23 Alpert k=2. ... .. .. . . C825
24 Alpert k=3 .. . . . C825
3 Variational problem C828
4 Method of solution CR828
5 Results C830
6 Discussion C833
References C834

1 Introduction

Alpert multiwavelets [1] were developed in 1990 to provide sparse represen-
tations of integral operators for the solution of integral equations. Recently
they have been successfully used to solve partial differential equations [2].
Alpert multiwavelets generalize Haar wavelets and consist of piecewise poly-
nomial functions; rather than the irregularly shaped Daubechies wavelets [5]
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which also generalize Haar wavelets.

The basic idea of a direct method in variational problems is to convert an
infinite dimensional problem into a finite dimensional problem by expressing
the unknown solution function as a finite series expansion in some set of basis
functions.

Many different basis sets have been used [8]. Walsh functions were
used by Chen and Hsiao [4]. This approach was generalized by Sloss and
Blyth [9]. Other approaches using globally defined functions include Hwang
and Shih [7], who used Laguerre functions. Locally defined functions—
nonzero only on a subinterval-—include the Shifted Legendre functions used
by Chang and Wang [3]. More recently, in 2004 Hsiao [6] modified the Walsh
function approach and used Haar wavelets.

Although Haar wavelets have some computational advantages they are
slow to converge and produce solutions which are piecewise constant. Alpert
multiwavelets have the advantage of converging more rapidly and produce
piecewise polynomial solutions of any order. Multiwavelets have not been
used previously for solving variational problems.

2 Alpert multiwavelets

2.1 Haar wavelets

The Haar wavelets form an orthonormal basis for Ly([0, 1)) and consists of a
single scale function S(t) plus wavelets H, ,(t) defined below. Note that all
these functions are normalized.

The scale function is

1, ifo<t <1,
S(t) = { 0, otherwise,



2 Alpert multiwavelets C823

S(t) Ho,o (1) Hio(t) Ho1 (1)
2 2
1 0.5 1I l 05 l o5 1 : 0'5_
4 ° R s = I
2 2 -2 -2
Ho o (1) Ho 1 (1) Ho 2 (1) Hp, 3 (1)
2 2 2
il 1 il 1 _l

[

—| |_| :
05 1 0[5 1 5 05
-l U -1 U -1 ) U
> -2 -2 -2

FIGURE 1: The scale function (top left hand function) followed by the first
seven Haar wavelets.

whereas the wavelets are
H, (t) =2"2H(2"t — (),
where the function H(t), the mother wavelet, is

1, ifo<t<s,
H(it)=¢ —1, if<t<1,
0, otherwise,

withn=0,1,2,... and £ =0,...,2" — 1. Note that the support for H, ,(t)
is the interval [277¢,27"(¢ 4 1)). The first eight terms of the Haar basis are
shown in Figure 1.

In applications, functions are approximated by a Fourier-wavelet series
which is truncated to the series with the scale function(s) and all wavelets
up to the given level n. For the case of the Haar wavelets, there is one scale
function with a total of m = 2"*! terms in the truncated series.
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2.2 Alpert wavelets

Alpert multiwavelets generalize Haar wavelets by replacing the single scale
function S(t) by k scale functions S’(t), where j = 0,1,...,k — 1, defined
on [0,1). The functions S7(t) are derived from the first & Legendre polyno-
mials P;(t) by rescaling, shifting and renormalizing so that S7(t) are defined
on [0,1) rather than [—1,1) [2]. Note that the S7(¢) functions form an or-
thonormal set and span the space of all polynomials of order up to £ — 1 on
the interval [0,1).

Similarly we replace the single wavelet Hoo(t) = H(t) on [0,1) by & or-
thonormal wavelets Aj ,(t) = A7(t) on [0,1), where j = 0,1,...,k —1. The
Alpert wavelets are then

AL () =240 (2" — 1),

where the functions A’(t) are defined below and where n = 0,1,2,... and
¢ =0,1,...,2" — 1. Note that the interval [27"¢,27"(¢ + 1)) is also the
support for the A] ,(¢) functions.

Going from Haar to Alpert we replace one function on each subinterval
with a basis of k functions on each subinterval. An Alpert k wavelet series
truncated to the level n has m = k2"*! terms.

The k wavelets A7(t) on [0,1) are required to be piecewise polynomial
of order at most & — 1 on each of the two subintervals [0,1/2) and [1/2,1).
This requirement derives essentially from the multiresolution structure of the
wavelet basis [10]. This means that there are 2k coefficients that need to
be chosen to define the A’(t) functions. The only essential constraints are
that the 2k functions {A7(¢), S?(¢)} form an orthonormal set. However, this
does not provide enough constraints to determine the polynomial coefficients
uniquely. Alpert makes some special choices which give the polynomials up
to a choice of sign [1] and it is these polynomials which we use.
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2.3 Alpert k=2

The first two scale functions, which are essentially Legendre polynomials, are

1, fo<tg1
0 _ ) xXbtx 4
57 = { 0, otherwise,

and
Si(t) = V3(1—2t), ifo<t<1,
10, otherwise.

The corresponding Alpert wavelets A%(t) = Af,(t) and A'(t) = Aj,(t)
are
0 —V/3(4t - 1), ifo<t<1/2,
A(t) = :
V34t —3), if1/2<t<1,

and

L [ 6t—1, if0<t<1)/2,
A<t)_{6t—5, if1/2<t<1.

The first 16 terms of the Alpert wavelets basis, with k& = 2, are given in
Figure 2. Any function which is piecewise linear on the four subintervals
of [0,1) can be expressed as a truncated series of these 16 wavelets.

2.4 Alpert k=3

With k& = 3 we just add the next shifted and rescaled Legendre polynomial

$2(1) = VB(6t2 — 6t +1), if0<t<1,
10, otherwise,

and the three wavelets

A1) = —T 424t —402, if0<t<1/2,
T B 56t 44062, if1/2<t<1,
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FIGURE 2: The first two Alpert (k = 2) scale functions (top left) plus the
next 14 Alpert wavelets plotted in pairs.
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FIGURE 3: The first three Alpert (k = 3) scale functions.
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FIGURE 4: The first three Alpert (k = 3) wavelets.
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Al(t) = V3(1 — 14t + 30t?), f0<t<1/2,

O VB(17T — 46t +301%), if1/2<t <1,
A2(1) = —V5(% + 6t —16t%), if0<t<1/2,
| VB(EE —26t+16t%), if1/2<t<1.

Note that we do not just add an extra wavelet when going from k£ = 2 to
k = 3 but get three new wavelets, hence the A7(t) are a different functions
for different choices of k. The first three Alpert scale functions and the first
three Alpert wavelets are shown in Figures 3 and 4 respectively.
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3 Variational problem

Find the function z(¢) that optimizes the functional

1 2
J_/ {j;Q(t) - —x2(t)} dt, (1)
0 4
with 2(0) = 0 and z(1) = 1. The exact solution is z(t) = sin(nt/2).

All the examples in Hsiao [6] are represented exactly by piecewise poly-
nomials of order four or less. Since we want to demonstrate the convergence
properties of the Alpert wavelet basis we choose an example for which the
solution cannot be represented exactly by finite order piecewise polynomials.

4 Method of solution

e Write the highest derivative Z(¢) in terms of the basis functions, that is
©(t) ~ > " ciei(t), where e;(t) are the functions of the wavelet basis:
scale functions plus wavelets.

e Write z(t) in the terms of the basis functions, that is z(t) ~ > | d;e;(t).

e Substitute these into Equation (1) and use the orthonormality condi-

tions to get
2
2 T o
= - —d; ) . 2
J §i:(cz ) 2)

e Write the d; coefficients in terms of ¢;.

First write x(¢) in terms of Z(t) by
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This is rewritten by using our approximation for #(t) and the initial
condition z(0) = 0 to give

x(t) ~ Z Ci/o ei(u) du. (3)

At this point we solve for ¢y, which is the coefficient for S°(¢), by noting
that [ e;(u)du = 0 for all the basis functions except S°(t). This follows
from the orthogonality of all the other basis functions to S°(¢). From
this we conclude that z(1) =¢; = 1.

Now to write d; in terms of the ¢; we first need to project the integrals
in Equation (3) onto the basis functions. That is

t m
/ ek(u) du ~ Z A,mel(t) s
0 i=1

Aps = /O 1 [ /O ' ex(u) du] ei(t) dt

is the matrix form of the integration projection operator.

where

Now we write

wt) =Y e /Ot en(u)dury (Z ckAk,i)ei(t),

hence d; =Y, ¢, Ak -

e Optimize J to find the ¢;.

Substitute the expression for d; above back into Equation (2) to give

J:ZC?_%2<ZCkAk,i>2'
i k
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Use ¢; = 1 and solve the system of equations

oJ
=0
80@ ’
where 1 = 2,3,...,m to find the other ¢; values.

The solution is then

2(t) =D ) crAre(t).

%

5 Results

We use the Ly or Euclidean measure of error

E(n) = \/ / Fult) — fuOP dt

where f,(t) is the approximate solution, f.(t) is the exact solution and 2" is
the number of subintervals that [0, 1) is divided into at its finest level. Note
that this is a global measure of error.

The order of convergence can be approximated by log,[E(n)/E(n + 1)].
Increasing n by 1, halves the smallest subinterval that wavelets are defined
over.

Table 1 gives the global error measures for a range of n values, number
of subintervals for each of £ = 1, 2 and 3 basis functions per sub interval.
Approximations to the orders of convergence for the global error are given
in Table 2. The table shows that the order of convergence for Haar wavelets
approaches 1, for Alpert wavelets (kK = 2) approaches 2, and for Alpert
wavelets (k = 3) approaches 3.
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TABLE 1: L, error for the first three levels of Alpert wavelets, where k2"

is the number of basis functions.
n 1 2 3 4

Haar k=1 0.08105 0.04020 0.02000 0.01002
Alpert k=2 |0.004060 0.001015 0.000253 0.0000634
Alpert k£ =3|0.0001347 0.00001685 0.000002107 0.0000002634

TABLE 2: Approximate order of global convergence for the first three levels

of Alpert wavelets.
EQ) E(2) B(3)
log, B log, 03) log, B

Haar k=1 |1.0116 1.0032 1.0008
Alpert k=21 1.9990 1.9974 1.9999
Alpert k=3 | 2.9986 2.9996 2.9999

. T~
g <o TR

0.2 0.4 0.6 0.8 1

FIGURE 5: Haar n = 4 (32 basis functions). The first of the two plots shows
both the approximate and exact solutions. The second plot show the error,
fa(t) — fe(t), as a function of ¢.
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FIGURE 6: Alpert (k = 2) n = 3 (32 basis functions). The first of the two
plots shows both the approximate and exact solutions. The second plot show

the error, f,(t) — fe(t), as a function of t.
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FIGURE 7: Alpert (k = 3) n = 2 (24 basis functions). The first of the two
plots shows both the approximate and exact solutions. The second plot show

the error, f,(t) — fe(t), as a function of t.
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A basis has k2"*! basis functions, where k is the number of basis functions
per subinterval and 27" is the length of the smallest subinterval over which
a basis function is non-zero. It is therefore not possible to make a straight
comparison between different k& values for the same n. To show that there
is an advantage in using the Alpert wavelets a selection of k and n values
has been made such that the number of basis functions is approximately the
same. The following combinations were chosen for comparison. Haar n = 4,
with 32 basis functions; Alpert £ = 2 and n = 3, with 32 basis functions;
and Alpert k = 3 and n = 2, with 24 basis functions. Table 2 shows that the
Alpert wavelet schemes have the expected convergence orders and that for
a similar (or reduced) computational cost, the higher order Alpert schemes
provide greatly increased accuracy compared to the Haar scheme.

Figures 5, 6 and 7 show both the exact and approximate solutions, plotted
on the same graph (the left hand graph), and the error as a function of ¢
plotted on the right hand graph. Note that in Figures 6 and 7 there is no
visible difference between the exact and approximate solutions.

6 Discussion

We have demonstrated the use of Alpert multiwavelets, which are a natural
generalization of Haar wavelets, to successfully solve a variational problem,
and confirmed the rates of convergence for different choices of the number of
scale functions, k. The benefit of using these wavelets is the increased rate of
convergence and much lower errors compared to Haar. The most expensive
part of the calculation was the computation of the integration projection
operator. In the calculations done for this paper they were done exactly using
the symbolic capabilities of Mathematica. About 30% of the matrix entries
were non-zero. Although an expensive computation it is only required to
be calculated once and applied to a number of different problems. Finding
symmetries and recursive definitions of this operator are currently under
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investigation. Another problem that limits the application of this approach
is being able to deal with functions of an unknown function, such as its cube
or square root: further work is being directed to resolving this difficulty.
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