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A geometric construction of travelling wave
solutions to a Keller–Segel model
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Abstract

We study a version of the Keller–Segel model for bacterial chemo-
taxis for which explicit travelling wave solutions are known in the zero
attractant-diffusion limit. Travelling wave solutions are constructed in
the small diffusion case using geometric singular perturbation theory,
which converge to the explicit solutions in the singular limit.
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1 Introduction

The Keller–Segel model [11, 12] is a very popular model for cell migration in
response to a chemical gradient [7, 13, e.g., and references therein]. Because it
has explicit travelling wave solutions in the limit where diffusion Du → 0 [3],
we are interested in the following particular version of the Keller–Segel model:
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∂2u

∂x2
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u
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(1)

with u > 0 , w > 0 , x ∈ R , t > 0 , K,Q > 0 , Du,w > 0 . Here u(x, t) is the
concentration of the chemical or chemoattractant and w(x, t) is the density
of the migrating species. The constant K is the rate of uptake of the chemical
by the migrating species, the constant Q is the chemotactic coefficient and
the constants Du,w are the diffusivities of each species. In particular, we are
interested in finding travelling wave solutions to (1) in the case where both
the diffusivities are small but of the same order: 0 6 Du,w � 1 .

With Du,w small, (1) is a singularly perturbed system; due to the advection
(chemotaxis) term (the last term in the w equation in (1)) we are unable to
scale out the small parameters. This makes (1) amenable for analysis via
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geometric singular perturbation theory (gspt) [8, 10]. Using gspt, we show
that (1) supports travelling wave solutions, which, in the limit Du,w → 0 ,
agree with the explicit solutions given by Feltham and Chaplain [3].

The background states of (1) are (u,w) = (u∗, 0) , with u∗ > 0 for physically
relevant solutions. We are interested in travelling wave solutions that travel
with a constant speed c. Therefore, we introduce a comoving frame z = x−ct
and (1) becomes

−c
du

dz
= Du

d2u

dz2
− Kw ,

−c
dw

dz
= Dw

d2w

dz2
−
d

dz

(
Qw

u
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)
.

(2)

In particular, we study travelling wave solutions that satisfy the asymptotic
conditions

lim
z→−∞u(z) = ul , lim

z→∞u(z) = ur > ul , lim
z→±∞w(z) = 0 . (3)

Assuming ur > ul implies c > 0 ; integrating the first equation of (2) with
respect to z from −∞ to ∞ and applying the asymptotic conditions for u
along with w > 0 gives c(ur − ul) > 0 .

Integrating the second equation of (2) gives

σ0 = Dw

dw

dz
+ cw−

Qw

u

du

dz
,

with σ0 a constant of integration. When z→∞ , (u(z),w(z),u ′(z),w ′(z))→
(ur, 0, 0, 0) with ur > 0 by definition. This implies σ0 = 0 [3]. Thus, the
system considered henceforth is

Du

d2u

dz2
= Kw− c

du

dz
,

Dw

dw

dz
=
Qw

u

du

dz
− cw ,

(4)

along with (3).
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1.1 An explicit solution for Du = 0

As alluded to above, for Du = 0 and Dw < Q , (2) (and hence (4)) has explicit
solutions [3, for derivation]:

U(z) :=
[
u−1/γ
r + σe−c(z+z

∗)/Dw
]−γ

,

W(z) := e−c(z+z
∗)/Dw

[
u−1/γ
r + σe−c(z+z

∗)/Dw
]−γQ/Dw ,

(5)

with
γ =

Dw

Q−Dw

> 0 , σ =
K(Q−Dw)

c2
> 0

and z∗ an integration constant representing the translational invariance of
the travelling wave solutions.

For fixed 0 < Dw < Q , limz→−∞U(z) = 0 , with U(z) defined in (5). Thus, in
order to compare solutions of (4) with the explicit solution (U,W)(z) (defined
in (5)), we take ul = 0 . Furthermore, since (4) is invariant with respect to
the multiplicative scaling

(u,w)→ (ku,kw) , k ∈ R , (6)

we assume, without loss of generality, ur = 1 .
Remark 1. Observe that

lim
z→−∞

W(z)

U(z)
=

c2

K(Q−Dw)
,

so the w/u term in (4) is bounded for the explicit solution as z→ −∞ .

1.2 Taking the limit as Dw → 0

Since we are interested in the case where both diffusivities are small, consider
the limit of (5) as Dw → 0 . Choosing z∗ = (Q−Dw) ln (ur)/c with ur = 1
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Figure 1: Plots of (U,W)(z) defined in (5), with decreasing Dw , as well
as (U0,W0)(z), defined in (7). The dashed curves correspond to U(z) and the
solid curves toW(z), with the value of Dw indicated by the colour. We choose
z∗ = (Q−Dw) ln (ur)/c such that the shock in theW0-profile occurs at z = 0 .
The remaining system parameters are given by Feltham and Chaplain [3]:
Q = 2 , K = 1 , c = 2 and ur = 1 .

(that is, z∗ = 0) and evaluating the limit gives

lim
Dw→0U(z) =

{
ecz/Q , z 6 0 ,
1 , z > 0 ,

and lim
Dw→0W(z) =


c2

KQ
ecz/Q , z 6 0 ,

0 , z > 0 .
(7)

For convenience, we label this limit (U0,W0) and note that it is not a solution
to (4) in the classical sense since the W0-profile is discontinuous at z = 0 .
This location of the discontinuity explains our choice of z∗ : a different z∗
would result in a similar, but translated, profile with the shock located at
another z value.

Figure 1 shows (U,W) (5) for the above stated z∗ and decreasing Dw , as well
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as the shock solution (U0,W0) (7). Clearly, (U,W)→ (U0,W0) as Dw → 0 .

We provide evidence that (4) also possesses heteroclinic solutions connect-
ing (0, 0) to (1, 0), with small diffusion coefficients Du,w (that is, Du 6= 0).
Therefore, we show that (1) supports travelling wave solutions connect-
ing (0, 0) to (1, 0) and hence, by the scaling (6), travelling wave solutions
connecting (0, 0) to (ur, 0) with ur > 0 .

2 Travelling wave solutions for 0 < Du,w � 1

Theorem 2. Let Du = µε and Dw = ε , with 0 < ε� 1 a sufficiently small
parameter. Moreover, let µ, K, Q, c be O(1) (with respect to ε) and positive
constants. Then, travelling wave solutions to (1) connecting (0, 0) to (ur, 0)
with ur > 0 , exist.

We use geometric singular perturbation theory (gspt) to underpin the above
theorem. gspt is applied to problems exhibiting a clear separation of scales,
for example, cell migration where diffusion is operating on a much slower scale
than advection or reaction. The power of this method lies in the ability to
separate the scales into independent, generically lower dimensional problems,
which are more amenable to analysis.

We begin by introducing v = uz so (4) is rewritten as the three dimensional
system of first order ordinary differential equations (odes),

uz = v ,
µεvz = −cv+ Kw ,

εwz = −cw+
Qvw

u
.

(8)

This system exhibits two distinct spatial scales: the ε premultiplying the
v and w derivatives makes these fast variables, while u is a slow variable,
with z the slow travelling wave coordinate. We refer to (8) as the slow system.
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Now we write (8) in terms of a fast travelling wave coordinate y = z/ε (ε 6= 0),

uy = εv ,
µvy = −cv+ Kw ,

wy = −cw+
Qvw

u
,

(9)

which is referred to as the fast system.

In the singular limit ε→ 0 , the slow system reduces to the one dimensional
system with two algebraic constraints,

uz = v ,
0 = −cv+ Kw ,

0 = −cw+
Qvw

u
,

(10)

which we call the reduced problem. Similarly, the fast system reduces to the
two dimensional system with a parameter u = ũ ∈ R+ ,

µvy = −cv+ Kw ,

wy = −cw+
Qvw

ũ
,

(11)

which we refer to as the layer problem. In contrast to the slow and fast
systems, the reduced and layer problems are not equivalent.

The strategy is as follows. Firstly, we analyse the two lower dimensional
systems (10) and (11) independently. Secondly, we construct singular solutions
that are concatenations of solutions of each of the subsystems. Finally, using
gspt, and in particular Fenichel theory [4, 5], we provide evidence that these
singular solutions persist as solutions of the full three dimensional problem (8)
or (9), and hence as travelling wave solutions of (1), for sufficiently small
0 < ε� 1 .
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2.1 Layer problem

The layer problem (11) is a system of two first order odes with parameters
K,Q, c,µ, ũ > 0 . It has two steady states (v,w) = (vn,wn) = (0, 0) and
(v,w) = (vs,ws) = (cũ/Q, c2ũ/(QK)) . The steady states coincide in the
limit ũ→ 0 .

Lemma 3. For all K,Q, c,µ, ũ > 0 , the layer problem (11) possesses a
heteroclinic orbit connecting (vs,ws) with (vn,wn). We refer to this connection
as a fast fibre.

Proof: The steady state (vn,wn) is a stable node with eigenvalues and
eigenvectors

λn1 = −c/µ ,
λn2 = −c ,

ψn1 = (1, 0) ,
ψn2 = (K, c(1− µ)) .

For µ = 1 the eigenvalues coincide and have algebraic multiplicity two. The
generalised eigenvector in this situation is ψg2 = (0, 1/K) . The other steady
state (vs,ws) is a saddle with eigenvalues and eigenvectors

λs1 = cθ
−/µ > 0 ,

λs2 = −cθ+/µ < 0 ,
ψs1 = (Kθ−, cµ) ,
ψs2 = (−Kθ+, cµ) ,

where θ± = 1
2

√
1+ 4µ± 1

2
. With the exception of the location of the steady

state (vs,ws), these linearisations are independent of ũ.

The v-nullcline of (11) is w = cv/K and the w-nullclines are w = 0 and
v = cũ/Q . Since µ > θ− for µ > 0 (which is a trivial exercise to show),
the unstable trajectory leaving (vs,ws) in the downward direction enters the
region R := {(v,w) | 0 < v < cũ/Q , 0 < w < cv/K} , the region enclosed
by the three nullclines. The trivial w-nullcline (the v-axis) is invariant with
respect to the flow of (11). On the other boundaries of R, the flow of (11)
points inward. This yields that trajectories entering R cannot leave R. Thus,
as the stable trajectory entering (vs,ws) is not in R (that is, θ+ > 0 > −µ)
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Figure 2: An illustration of the existence of a heteroclinic connection between
(vs,ws) and (vn,wn): the unstable trajectory leaving (vs,ws) lies in R and
since trajectories cannot leave R and there are no steady states inside R it
must connect to the attracting steady state (vn,wn).

and there are no steady states inside R, the Poincaré–Bendixson theorem [9]
guarantees that the unstable trajectory leaving (vs,ws) must connect with
the stable node (vn,wn); see Figure 2. The sign of µ− 1 determines whether
this trajectory approaches (vn,wn) via ψn1 or ψn2 . ♠
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Figure 3: (top) The critical manifold S, depicted in (u,w)-space; and (bot-
tom) the evolution of u and w in the different regions. The open circle at
the origin signifies that the original system (1) has a singularity at this point.
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2.2 Reduced problem

The two algebraic constraints of (10) are equivalent to the steady states of (11)
(with u = ũ). Consequently, the flow of the reduced problem is restricted to
the one dimensional critical manifold

S =

{
(u, v,w)

∣∣∣∣ v = Kw

c
, 0 = w

(
Qv

u
− c

)}
,

which consists of two branches

Sa := {(u, v,w) | v = 0 ,w = 0}

and

Sr :=

{
(u, v,w)

∣∣∣∣ v = cu

Q
,w =

c2u

QK

}
.

The previous section demonstrated that Sa and Sr are normally hyperbolic:
the steady states of the layer problem (11) have no eigenvalues with zero real
part. Moreover, Sa restricted to (v,w)-space is attracting, while Sr restricted
to (v,w)-space is repelling, hence the subscript choice. Finally, Lemma 3
shows that for fixed u the layer flow as described by (11) provides connections
between the points on Sr and Sa along fast fibres. An illustration is given in
the top panel of Figure 3.

We consider the reduced flow on the two branches Sa and Sr separately. Firstly,
on Sa we have uz = 0 . Therefore, there is no flow along Sa and, using the
asymptotic boundary conditions (3) with ur = 1 , we have (u, v,w) = (1, 0, 0).
This also implies that u = ũ = 1 along a fast fibre.

Secondly, on Sr we have uz = cu/Q , which is solved explicitly to give

u(z) = ec(z+z∗)/Q ,

where z∗ is the constant of integration. Consequently,

v(z) =
c

Q
ec(z+z∗)/Q , w(z) =

c2

QK
ec(z+z∗)/Q .
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Thus, upon choosing z∗ = 0 , in terms of the original variables u and w and
in the singular limit ε→ 0 , the slow flow is

u(z) =

{
ecz/Q on Sr ,
1 on Sa ,

and w(z) =


c2

KQ
ecz/Q on Sr ,

0 on Sa .
(12)

2.3 Singular heteroclinic orbits

We now have enough information to construct heteroclinic orbits in the
singular limit ε→ 0 . These singular orbits are concatenations of components
from the reduced and layer problems. We construct the waves in backward z.

In backward z, a solution begins on Sa from the point (u, v,w) = (1, 0, 0).
Since there is no evolution of the slow variables on Sa , the only possibility is
for the solution to switch onto a fast fibre of the layer problem. This connects
the solution to the appropriate point on Sr : (u, v,w) = (1, c/Q, c2/(QK)).
Once back on Sr , the slow flow of the reduced problem evolves the solution
towards the initial state of the wave (u, v,w) = (0, 0, 0); see the bottom panel
of Figure 3 for an illustration.

The choice of z∗ in the previous section means that the jump between Sr and Sa
occurs at z = 0 and hence (12) is equivalent to (7).

2.4 Heteroclinic orbits for 0 < ε� 1

The persistence of the singular heteroclinic orbits for sufficiently small 0 <
ε� 1 to nearby smooth solutions of (8), and hence to travelling wave solutions
of (1), is studied using Fenichel theory [4, 5]. In the following, we provide
evidence that this theory can, in all likelihood, be applied to the problem at
hand.
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Since Sr and Sa are normally hyperbolic, Fenichel’s first theorem [6, e.g., and
references therein] implies that these manifolds deform smoothly to O(ε)-close,
manifolds Sr,ε and Sa,ε , which are locally invariant under the flow of (8)1. In
this case, the model is simple enough that we can compute these perturbed
manifolds explicitly, to any order:

Sr,ε =

{
(uε, vε,wε)

∣∣∣∣ vε = cuε

Q− ε
,wε =

c2uε(Q+ ε(µ− 1))

K(Q− ε)2

}
,

Sa,ε = {(uε, vε,wε) | vε = 0,wε = 0} = Sa .

It is not surprising that Sa,ε = Sa , since Sa coincides with the background
states of (1), which are not affected by ε. Consequently, the flow on Sa,ε also
remains unchanged, that is, there is no flow along Sa,ε . Furthermore, since
Sr,ε → (0, 0, 0) as uε → 0 , the solution evolving on Sr,ε will still connect (in
backward z) to the initial state of the perturbed wave.

By Fenichel’s second theorem2, the unstable manifold of Sr , WU(Sr), perturbs
smoothly for 0 < ε� 1 to a nearby manifold WU(Sr,ε) that is locally invariant
under the flow of (8). This also holds true for the stable manifold of Sa .

If WU(Sr,ε) and WS(Sa,ε) intersect, then Fenichel’s third theorem ultimately
guarantees the persistence of nearby fast fibres and, consequently, the persis-
tence of the heteroclinic orbits. A sufficient condition for this intersection to oc-
cur is the transverse intersection of WU(Sr) and WS(Sa) since then the implicit
function theorem implies persistence under small perturbations [6]. Doelman
et al. [2] showed one possible technique for proving that WU(Sr) and WS(Sa)
intersect transversely.

In conclusion, the solutions constructed in the singular limit appear to persist
as nearby solutions of (1) for Du = µε , Dw = ε , with ε sufficiently small,

1Fenichel theory only holds for compact manifolds. So, in principle, we first have to
compactify the manifolds Sr and Sa by choosing an appropriate upper bound for u, for
example, u = 2 .

2again after compactifying Sa,r .
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which connect to a nearby end state (1 + O(ε), 0) . However, since (1) is
invariant with respect to (6), we could rescale the perturbed wave to connect
to the original end state of the unperturbed wave (1, 0) but with slightly
different speed c(ε).
Remark 4. It is not clear a priori that gspt extends to the singularity
(u, v,w) = (0, 0, 0) . However, Doelman et al. [1] studied a generalised Gierer–
Meinhardt equation, which also possesses a singularity within the domain
of interest. As is the case here, this singularity lies on the boundary of the
critical manifold and coincides with a fixed point of the reduced problem.
They showed how to extend gspt and Fenichel theory to points on the
boundary of the critical manifold, assuming the system is well behaved as
the solution approaches the singularity. Similar arguments to those presented
by Doelman et al. [1] can, in principle, be used here to show that gspt and
Fenichel theory extend to the singularity.
Remark 5. The above results hold for µ = 0 . Moreover, in this case we solve
the layer problem explicitly:

v =
Kcũ

QK+ βecy
, w =

c2ũ

QK+ βecy
,

where β is the integration constant.

3 Conclusion

Using gspt, we provided arguments in support of the existence of travelling
wave solutions to (1) with Du = µε , Dw = ε and ε sufficiently small. To
leading order, these solutions are given by ur times the expressions for u andw
stated in (12). Here, ur is the asymptotic value of the u component of the
wave for z → ∞ . This example acts to demonstrate the power of gspt
for studying the existence of travelling wave solutions of models such as the
Keller–Segel model.
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