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Prediction intervals for power generation from
multiple wind farms
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Abstract

New Zealand has several existing or proposed wind farms to generate
electric power. Small variations in wind speed can cause large variations
in power output, due to a nonlinear relationship between wind speed
and power. These variations may be correlated across different wind
farms. There is interest in finding prediction intervals to quantify
the risk of extreme changes in total wind power generation. At the
individual wind farm level, an ad hoc method is proposed for modelling
the probability distribution for wind some minutes in the future. This
is used to estimate the conditional cumulative distribution function
for future power output at each farm, given the regression model. A
discrete approximation is used for the power output random variable,
which reduces the problem to a set of conditional probabilities that can
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be calculated. A recursive algorithm is used to combine the discrete
cumulative distribution functions to find the conditional distribution
of total power across all the wind farms given the most recent winds,
and hence to find a prediction interval.
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1 Introduction

Wind farms generate about 3–4% of New Zealand’s electricity, but this
may grow to 15–20%. Wind power generation has the advantages of less
environmental impact and less cost than hydroelectric stations, gas/coal-fired
power stations or geothermal generation. However, wind power is highly
variable and its output needs to be continuously monitored to avoid the risk
of sudden large changes in voltage damaging electrical equipment. To prevent
such risks, up to 100MW of hydroelectric generation capacity is currently
reserved to instantaneously offset changes in wind. More reserve capacity is
likely to be needed in future. Transpower1, the operator of New Zealand’s

1Transpower, https://www.transpower.co.nz/

https://www.transpower.co.nz/
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electricity grid, is interested in quantifying the need for extra capacity and, in
particular, predicting occasions when it is economical to reserve extra hydro,
gas or geothermal capacity. These alternative sources have different costs
and need different amounts of lead-time to ramp up generation. For this
reason, and for efficient operation of the competitive electricity market, power
prediction needs to be made for different time scales: 10, 20, 30, 60, 120 and
300 minutes into the future.

In February 2011, Transpower presented the problem of predicting power
output for multiple wind farms to the Mathematics and Statistics in Industry
Study Group (misg) held at rmit University, Melbourne. Transpower was
especially interested in winds at nearby farms being correlated, and hence
an increased risk of extreme power fluctuations. Synthetic data based on
weather forecasts was provided for wind speeds at 15 current or planned wind
farm sites throughout New Zealand. Some analysis of this problem was given
by Whiten, McDonald and Bedford [1].

Section 2 suggests an empirical distribution for modelling the wind speed given
recent winds. Section 3 approximates the cumulative distribution function
(cdf) of the power output from a wind farm by a discretized version with
certain probabilities. These probabilities are estimated via a regression of the
transformed wind on past observations. Section 4 uses a recursive algorithm
to find the cdf of the total power added across all the wind farms, and hence
to find a prediction interval for future power output.

Figure 1 shows histograms of the synthetic wind distribution for each of
the 15 actual or planned wind farms, and Figure 2 shows the corresponding
histograms of power generated. Here, for simplicity it is assumed each
farm generates a maximum of 100MW. The reason for the bimodal power
distribution is that the wind-to-power relationship is highly nonlinear. The
relationship is illustrated in Figure 3. For a single turbine (Figure 3(a)),
no power is generated for winds < 5ms−1, but then the power increases
with the cube of the wind speed until it reaches a maximum at 15ms−1, at
which point a braking mechanism prevents the turbine going faster. The
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Figure 1: Histograms of synthetic wind data for 15 wind farms (m s−1).
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Figure 2: Histograms of power generation (MW), corresponding to Figure 1.
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consequences of brake loss were demonstrated on video [3]. Once the wind
reaches 25ms−1 power generation cuts out altogether, again as a safety
mechanism. Figure 3(b) shows the total power generation over several turbines
in one farm, based on interpolation from a graph in an industry publication.
Let Xit denote the wind speed for the ith farm at time t, and Yit = h(Xit)
the corresponding power, then the interpolated curve shown in Figure 3(b)
is: h(X) = 0 for X 6 3.6 or X > 30.4 ; h(X) = 100 for 15 6 X 6 23.1 ;
h(X) = 33.679 − 20.264X + 3.4699X2 − 0.12159X3 for 3.6 < X < 15 ; and
h(X) = −6472.8 + 776.96X − 30.061X2 + 0.37853X3 for 23.1 < X < 30.5 .
This function was used to convert the winds in Figure 1 to the power output
in Figure 2. The potential change in total wind power generation (across the
15 wind farm sites) in just 10 minutes is illustrated in Figure 4. Power rises
or falls by more than 100MW on 0.7% of occasions, or around 370 times over
a year.

2 Wind distribution and transformation

Figure 5(a) shows 99% prediction bounds for future wind Xit at time t for
the mwt2 site (i = 9), regressed on the observed wind xit−3 three ten minute
lags earlier, using the standard formula

β̂0 + β̂1xit−3 ± t∗S
√
1+

1

t− 3
+

(xit−3 − x̄i)2∑t−3
j=1 (xij − x̄i)

2
. (1)

The β̂0 and β̂1 are estimated regression coefficients, xij refers to the wind
history j = 1, . . . , t−3 , the sample mean wind is x̄i , and the sample standard
deviation is S. If one ignores the wind autocorrelation, then the multiplier
is t∗ = 2.58 since the number of observations t − 3 is large. Figure 5(a)
shows winds are underdispersed for initial winds 6 5 ms−1 and overdispersed
for initial winds between 10 and 25ms−1. The upper (supposedly 99.5%)
prediction bound is exceeded by 1.08% of points, while 0.61% of points are
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Figure 3: (a) Function relating wind to power for a single turbine. (b) Function
relating wind to power across a wind farm. In both graphs power is expressed
as a percentage of maximum power output.

below the lower (supposedly 0.5%) prediction bound. The probability plot
Figure 5(b) shows the residuals are overdispersed relative to the normal
distribution. To fix these problems, two ad hoc methods are proposed to
rectify first the asymmetry and then the overdispersion.

Consider a power transformation of the wind speeds, Xpit for farm site i and
time t, where the exponent p is chosen empirically. Let Xpi[q] be the qth quan-
tile of the distribution of all Xpit values (aggregated over t). For symmetry,
we want the sample 0.5% quantile Xpi[0.005] and 99.5% quantile Xpi[0.995] of
transformed wind speeds to be equidistant from the median Xpi[0.5] . That is,
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Figure 4: Boxplots of ten minute change in wind power generation versus
initial power (grouped in 20MW intervals).
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Figure 5: (a) The 99% prediction bounds (black lines) for a simple linear
regression of the wind Xit at the mwt2 wind farm on the wind at the same
farm 30 minutes earlier, Xit−3 . (b) Normal probability plot of residuals from
the regression.

Xpi[0.995] − X
p
i[0.5] = X

p
i[0.5] − X

p
i[0.005] . Rearranging, we obtain the function

g(p) =

(
Xi[0.995]

Xi[0.5]

)p
+

(
Xi[0.005]

Xi[0.5]

)p
− 2 = 0 , (2)

which we solve for p using Newton’s method p = p0 − g(p0)/g
′(p0) . A

one-step solution with starting value p0 = 1 gives good results for most of
the wind farm data.

To correct the overdispersion we replace t∗ in (1) with td , where the degrees of
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freedom d is chosen so that the difference in quantiles xpi[0.995]−x
p
i[0.005] = 2tdS .

After solving for td an approximate d is found using

1

d
= 0.581− 1.647

1

td
+ 0.388

(
1

td

)2
, (3)

which is obtained by regression. The error for d in using the approximation (3)
is < 0.5 for d < 200 . Figure 6 illustrates that these empirical methods reduce
the heteroscedasticity and overdispersion. Here the estimates for farm mwt2
(i = 9) are p̂i = 0.661 , d̂i = 65 , and the percentage of points above and
below the 99% prediction bounds are 0.55% and 0.43%, respectively.

The pi and di need to be chosen separately for each wind farm, i = 1, . . . , 15 ,
and the transformed winds Xpiit are then regressed on the lagged winds Xp11t−l ,
Xp22t−l , . . . ,X

p15
15t−l where l is the time lag. Whiten et al. [1] suggested also

including time of day (via sinusoidal curves), indicator variables for month,
and interactions between month and time, in the regression model as this
will improve the fit, especially for predictions more than 30 minutes into the
future, and also reduce the autocorrelation of errors.

3 Regression

After fitting the regression model, the residuals from the regression appear
to be normal and have small autocorrelations. That is, the overdispersion
and autocorrelation in Xpit is largely removed by regression on past data.
This implies that, conditional on suitable predictor variables (including past
winds), the regression model along with normal errors fully describes the
distribution of the random variable Xpit for future observation times t. So,
after back-transformation the model also gives the conditional distribution
of the actual winds Xit , and from these the conditional distribution of the
power output random variable Yit = h(Xit) , given the predictors.

The correlation rij between the regression residuals from different wind farms
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Figure 6: (a) The 99% prediction bounds (black lines) for a simple linear
regression of the Xpit at mwt2 wind farm on the Xpit−3 at the same farm
30 minutes earlier. (b) Quantile-quantile plot of the residuals against td ,
where p and d were chosen using the ad hoc methods.

i and j was also observed to be small, rij ≈ 0.03 for all i 6= j . This allows the
simplifying assumption that the Yit and Yjt are conditionally independent for
i 6= j (given the predictor variables). Thus the total power St =

∑15
i=1 Yit is

approximately the sum of 15 (conditionally) independent bounded random
variables. If one can estimate the conditional cdf of St , then one can find
its 0.5% and 99.5% quantiles and this gives the 99% prediction interval. The
difficulty is to calculate this conditional cdf in a computationally efficient
way, since predictions for multiple time scales are needed every 10 minutes.
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4 CDF for sum of bounded random variables

This section assumes the maximum power output for each wind farm is 100MW.
This is computationally convenient but the method can be generalized to
unequal power maxima for each farm, and also to unequal wind-to-power
functions h(·) . Let Wit = round(Yit) be a discretized version of the power
output at farm i at time t. That is, Wit takes values w = 0, 1, 2, . . . , 100 ,
with conditional probabilities πit0 , πit1 , . . . ,πit100 , say, given the predictor
variables. Let ξit−l denote these predictor variables for Xpiit based on data at
time lag l. Now, consider the two sides of the wind-to-power conversion curve
in Figure 3(b), say function h1(·) for winds 6 20ms−1 and function h2(·) for
winds > 20ms−1. Since we get a certain power output w from either the left
or right side of the curve, the conditional probability

πitw = Pr(w− 0.5 < Yit < w+ 0.5 | ξit−l) = π1itw|ξit−l
+ π2itw|ξit−l

, (4)

say, where the subscripts 1 and 2 on π refer to the two sides of the curve. We
expand these probabilities as

πitw = Pr (aw < Xitw < aw+1 | ξit−l) + Pr (bw < Xitw < bw+1 | ξit−l) , (5)

where aw = h−1
1 (w−0.5) and bw = h−1

2 (w−0.5) for each w = 0, 1, 2, . . . , 100 .
The aw and bw are known constants given by the wind-to-power curve h.

Now assume the regression of Xpiit on ξit−l has normal errors and that pi is
known. Since n is large, a 100(1− 2π)% prediction interval for Xpiit as in (1)
is

X̂piit ±Φ
−1(π)SRit−l , (6)

where X̂piit is the linear predictor, Φ−1 is the inverse of the normal cdf and
SRit−l is a term involving the lagged predictor variables. One does not need to
calculate SRit−l explicitly since it can be requested from a regression routine.
Let C denote the lower value in (6). Then π = Φ

[
(C− X̂piit )/SRit−l

]
. Sub-

stituting apiw for C, for w = 0, 1, 2, . . . , 100 , one obtains the first probability
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Figure 7: The 99% prediction intervals for total power, based on a sim-
ple linear model prediction of wind: (a) 10 minutes into the future; and
(b) 60 minutes into the future. Black dots—realisation; red dashes—last value
before prediction; blue and green dashed lines—99% prediction bounds.

in (5) as

π1itw|ξit−l
= Φ

(
apiw+1 − X̂

pi
it

SRit−l

)
−Φ

(
apiw − X̂piit
SRit−l

)
, (7)

and similarly for the second probability π2itw in (5). This is reasonably quick
to compute since it only involves evaluating regressions and known functions,
not simulation. The next step is to approximate the conditional cdf of St by
the conditional cdf of the discrete sum S̃t =

∑15
i=1Wit .

The time subscript t is omitted in what follows. Consider the sequence of
random variables S̃(j) =

∑j
i=1Wi for j = 1, 2, . . . , 15 . Thus S̃(j) is the partial
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sum of discretized power outputs over the first j wind farms. Denote the
distribution function of S̃(j) as F(j)s = Pr(S̃(j) 6 s) . One finds F(j)s recursively:

F(1)s = Pr(W1 6 s) =
s∑

w=0

π1w for s = 0, 1, 2, . . . , 100 ,

F(2)s = Pr(S̃(2) 6 s) = Pr(W1 +W2 6 s)

=

s∑
w2=0

Pr(W1 6 s−w2 |W2 = w2)Pr(W2 = w2) =

s∑
w=0

F
(1)
s−wπ2w , (8)

for s = 0, 1, 2, . . . , 200 . This involves inner products of vectors of probabilities
padded with zeros and ones. Similarly,

F(j)s = Pr(S̃(j) 6 s) = Pr(S̃(j−1) +Wj 6 s) (9)

=

s∑
wj=0

Pr(S̃(j−1) 6 s−wj |Wj = wj)Pr(Wj = wj) =

s∑
w=0

F
(j−1)
s−w πjw ,

for s = 0, 1, 2, . . . , (j× 100) . Thus the recursion involves convolutions which
are quickly evaluated using fast Fourier transforms. Carrying the recursion
to j = 15 , one then identifies the s closest to the 0.5% and 99.5% quantiles
of S̃(15) and these together give an approximate 99% prediction interval for
future total power output. Conversely, since the whole approximate cdf is
available by this method, one could use the method to estimate the probability
that the change in power output will exceed 100MW, say, given the covariates.

As an illustration, Figure 7 shows 99% prediction intervals for simple linear
regressions of wind on past wind at each individual site. The regression is
for one day in May 2007, but based on all 2007 data. The red, green and
blue lines refer to the power, and consequent 99% prediction bounds, at
last observation (t = 1, . . . , 50). The black dots refer to the realized ‘future’
value (they appear to precede the red line since the black values are later
used as a predictor). In the 100 realizations, two are marginally outside the
99% prediction bounds, and visually the procedure appears to work well. A
regression model with more predictors may have less autocorrelation in the
errors, making the results robust over a range of conditions.
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5 Conclusion and future work

This article presented a computationally feasible approach for calculating
prediction intervals for total wind power across several wind farms. Further
work needs to be done to validate these prediction bounds and to ensure the
calculation is efficient. The regression needs to be sufficiently comprehensive
(for example, including wind information from other farms) to ensure the
residuals have minimal correlation. In practice the algorithm needs to allow
unequal maximum output for the different wind farms and possibly different
wind-to-power functions h(·) , but this is a minor technicality. Industry
can use these prediction bounds at various timescales to determine when
additional hydroelectric generation capacity needs to be reserved to ensure
safe, continuous supply in times of high variation. They can also be used to
decide when other means of generation should be ramped up to overcome
projected shortfalls in wind generation.
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