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Abstract

Optimal control for a linear neuro Takag–Sugeno fuzzy singular sys-
tem with quadratic performance is obtained using genetic programming
(gp). To obtain the optimal control, the solution of a matrix Riccati
differential equation is computed by solving a differential algebraic
equation using the gp approach. The obtained solution is equivalent
or very close to the exact solution of the problem. The accuracy of the
solution computed by the gp approach is qualitatively better than the
traditional Runge–Kutta method. An illustrative numerical example is
presented for the proposed method.
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1 Introduction

A neuro fuzzy system is a hybrid approach in which a fuzzy system is trained
using techniques similar to those applied to neural networks. One of the first
neuro fuzzy systems was the adaptive network-based fuzzy inference system
(anfis) [4]. The anfis represents a Takagi–Sugeno (ts) fuzzy system as
a multilayer feed-forward network which is trained via a back-propagation
algorithm. Neural networks and fuzzy systems are combined to access the
advantages of both systems and to avoid their individual weaknesses. The
neuro fuzzy system contains a mixture of algebraic and differential equations.
The algebraic equations represent the constraints on the solution of the
differential part.
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As the theory of optimal control of linear systems with quadratic performance
criteria is well developed, it is used in many practical design problems [1]. The
quadratic cost control problem is a more interesting problem since stability
is guaranteed when the system has all of its states available for feedback.
Da Prato and Ichikawa [2] showed that the optimal feedback control and the
minimum cost are characterized by the solution of a Riccati equation. Solving
the matrix Riccati differential equation (mrde) is the central issue in optimal
control theory. The problem is stated in Section 2.

Genetic programming (gp) is an evolutionary algorithm that attempts to
evolve solutions of the given problem by using concepts taken from naturally
occurring evolving processes. The technique uses the evolution of a large
number of candidate solutions through genetic operations such as reproduction,
crossover and mutation. It is based upon the genetic algorithm (ga) [3], which
exploits natural selection based on a fitness measure to breed a population of
trial solutions that improve over time. Although parallel algorithms compute
solutions faster than sequential algorithms, there are no reports on gp solutions
for mrde [7]. This article focuses on the implementation of a gp approach
for solving mrde and obtaining the optimal solution. Section 3 presents the
solution of the mrde. In Section 4, an example is given to illustrate the
advantage and accuracy of the gp solution by comparing the Runge–Kutta
(rk) solution.

2 Statement of the problem

In this section an anfis class of adaptive networks is proposed. For simplicity,
the fuzzy inference system has two inputs, x1 and x2 , and output [f1, f2] . The
rule base contains two fuzzy if-then ts-type rules [8]:

Rule 1 : if x1 is A1 and x2 is B1 , then f1 = p1x1 + q1x2 + r1 ;
Rule 2 : if x1 is A2 and x2 is B2 , then f2 = p2x1 + q2x2 + r2 .



2 Statement of the problem C516

A1

A2

B2

B1

N

N

P

P

å

x1

x2

w1

w2

w1
w1

w2

f1

w2 f2

f

Figure 1: Two rule fuzzy reasoning.

Figure 1 shows the architecture of fuzzy reasoning anfis with two rules. The
node functions in the same layer are of the same function family, as described
by Kumaresan [7]. The input variables xj are fuzzified as fuzzy variables with
Gaussian membership function.

The corresponding output for the neural network [10] is, for r number of rules,

Dx(t) = Aix(t) + Biu(t) , i = 1, . . . , r . (1)

Here, x(t) ∈ Rn is a generalized state vector with components xj , n is the
number of state variables, u(t) ∈ Rm is a control variable, Ai ∈ Rn×n and
Bi ∈ Rn×m are coefficient matrices associated with x(t) and u(t), respectively,
and Dx(t) denotes Eẋ(t) for the continuous case and Ex(t+1) for the discrete
case.

The proposed neuro fuzzy network has a neural-based linear ts fuzzy modelling
structure. Using the neural learning technique, this ts structure will proceed
the structure and parameter learning and generate the following linear ts
fuzzy system with

Rule i : if xj is Tji(mji,σji) for i = 1, . . . , r and j = 1, . . . ,n , then
Dx(t) = Aix(t) + Biu(t) .
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Here, Tji is a fuzzy variable with Gaussian membership function, mji and σji
are the mean and standard deviation of the Gaussian membership function,
respectively.

2.1 Neuro fuzzy optimal control system

Consider the linear dynamical neuro ts fuzzy singular system with

Rule i : if xj is Tji(mji,σji) for i = 1, . . . , r and j = 1, . . . ,n , then
Eiẋ(t) = Aix(t) + Biu(t) , x(0) = x0 , t ∈ [0, tf] , (2)

where the matrix Ei is singular, x0 is a given initial state vector and m 6 n .

To minimize both state and control signals of the feedback control system, a
quadratic performance index is minimized:

J =
1

2
xT(tf)EiFEix(tf) +

1

2

∫ tf
0

[xT(t)Qx(t) + uT(t)Ru(t)]dt , (3)

where the superscript T denotes the transpose operator, F,Q ∈ Rn×n are
symmetric and positive definite (or semidefinite) weighting matrices for x(t),
and R ∈ Rm×m is a positive definite weighting matrix for u(t). It is assumed
that |sEi−A| 6= 0 for some s. This assumption guarantees that any input u(t)
will generate one and only one state trajectory x(t).

If all state variables are measurable, then a linear state feedback control law

u(t) = −R−1BTi Ki(t)Eix(t) ,

is obtained for the system described by equation (2), where K(t) ∈ Rn×n is a
symmetric matrix and the solution of mrde. The mrde for the linear neuro
fuzzy system (2) is

ETi K̇i(t)Ei + E
T
i Ki(t)Ai +A

T
i Ki(t)Ei +Q− ETi Ki(t)BiR

−1BTi Ki(t)Ei = 0 , (4)

with terminal condition Ki(tf) = ETi FEi .
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3 Genetic programming method

gp is used to obtain a set of expressions. If the required number of expressions
satisfy the fitness function, then they will be the optimal solution of mrde.

3.1 Initialization of the population

The first step is to initialize the population. An initial population of the
desired size is generated randomly. The length of each chromosome x(t) in
the population is set according to the nature of the problem.

3.2 Grammatical evolution

Grammatical evolution is an evolutionary algorithm that produces code in
any programming language. The algorithm starts from the start symbol
of the grammar and gradually creates the program string by replacing non
terminal symbols with the right hand side of the selected production rule.
First read an element from the chromosome and compute Rule = V modNR ,
where V is the value of the chromosome and NR is the number of rules for
the specific non terminal symbol which is shown in Table 1. The symbol S in
the grammar denotes the start symbol of the grammar.

For example, consider the chromosome x = {7, 2, 10, 4, 4, 2, 11, 16, 30, 5} . The
method of producing a valid expression is shown in Table 2. The Rule =
V modNR is applied in each row of Table 2. In first line V = 7 and NR =
7 (number of elements in 〈exp〉 group in Table 1). In the next line is
〈exp〉〈op〉〈exp〉 which, from Table 1, is 0. Similarly the remaining rows of
Table 2 are found. The function which corresponds to the chromosome
is exp(x) + log[exp(y)] . O’Neil and Ryan [6] and Tsoulos and Lagaris [9]
provide further details.
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Table 1: The grammar of the proposed method.
S := 〈exp〉 (0)

〈exp〉 := 〈exp〉〈op〉〈exp〉 (0)
(〈exp〉) (1)
〈fun〉(〈exp〉) (2)
〈pre-op〉(〈exp〉) (3)
〈digit〉 (4)
x (5)
y (6)
z (7)

〈op〉 := + (0)
− (1)
∗ (2)
/ (3)

〈fun〉 := sin (0)
cos (1)
exp (2)
log (3)

〈digit〉 := 0 (0)
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
8 (8)
9 (9)
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Table 2: Example of construction of expression using bnf grammar.
String Chromosome Operation
〈exp〉 7, 2, 10, 4, 4, 2, 11, 16, 30, 5 7mod 7 = 0
〈exp〉〈op〉〈exp〉 2, 10, 4, 4, 2, 11, 16, 30, 5 2mod 7 = 2
fun(〈exp〉〈op〉〈exp〉) 10, 4, 4, 2, 11, 16, 30, 5 10mod 4 = 2
exp〈exp〉〈op〉〈exp〉 4, 4, 2, 11, 16, 30, 5 4mod 7 = 4
exp〈x〉〈op〉〈exp〉 4, 2, 11, 16, 30, 5 4mod 4 = 0
exp〈x〉+ 〈exp〉 2, 11, 16, 30, 5 2mod 7 = 2
exp〈x〉+ fun〈exp〉 11, 16, 30, 5 11mod 4 = 3
exp〈x〉+ (log)(〈exp〉) 16, 30, 5 16mod 7 = 2
exp〈x〉+ log(fun〈exp〉) 30, 5 30mod 4 = 2
exp〈x〉+ log(exp〈exp〉) 5 5mod 7 = 5
exp〈x〉+ log(exp〈y〉)

The fitness function provides a basis for competition among available solutions
and to obtain the optimal solution. Hence, the fitness function for mrde is
defined as

Er = {k1n(tl) −ϕ[kij(tl)]}
2
+

n−1∑
i,j=1

{
k̇ij(tl) − φij[kij(tl)]

}2
, (5)

where l = 0, 1, 2, . . . , tf represents the equidistance points in the relevant
range [0, tf] and the kij are elements of matrix K.

3.3 Genetic operators

The genetic operators reproduction, crossover and mutation are now defined.
In a reproduction process, the best chromosomes in a population, according
to their fitness values, are probabilistically assigned a large number of copies.
No new strings are formed in the reproduction phase. Koza [5] allowed
ten percent of the population to reproduce. The crossover is applied every
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generation to create new chromosomes which replace the worst individuals in
the population. There are many types of crossover operators. We use a single
point crossover technique. In the mutation process, for every element in a
chromosome, a random number in the range [0, 1] is chosen. If the number is
less than or equal to the mutation rate, then the corresponding element is
changed randomly, otherwise it remains unchanged.

3.4 Termination control

In each generation, a set of expressions are generated by the chromosomes. If
an expression minimizes the fitness function Er (5) to zero or very close to
zero and satisfies the initial condition, then the process is stopped; otherwise,
the gp approach continues.

3.5 Genetic programming algorithm

The algorithm has the following steps.

1. Initialize the random population.

2. Create a valid function using the grammar.

3. Evaluate the fitness value of the chromosome.

4. If the fitness tends to zero, then stop the procedure, otherwise proceed
to next step.

5. Generate a new population using genetic operations and then go to
Step 2.
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4 Numerical example

Consider the optimal control problem: minimize J, defined in equation (3),
subject to the neuro ts fuzzy singular system Rule i with r = 2 and n = 1
so that j = 1 and i = 1, 2 . Also,

E =

[
1 0

0 0

]
, S =

[
1 −1
−1 2

]
, A1 =

[
−1 −1
0 1

]
,

A2 =

[
−2 −2
0 2

]
, Bi =

[
0

1

]
, R = 1, Q =

[
1 −1
−1 1

]
.

The numerical implementation proceeds with tf = 2 . Then the optimal
control of the fuzzy system is found from the solution of mrde.

To solve the mrde, each chromosome is split uniformly into 30 parts and
the population size is 100. In the computation process, the replication rate
is 0.01, the crossover probability is 0.9 and the mutation rate is 0.05. After
150 generations,

k11 =
4

−1+ 5e−4t+8
, k12 =

4

−1− 3e−4t+8
,

which satisfy the fitness function Er (5), and the value of the fitness function
tends to zero, thus satisfying the termination condition. Hence the solution
of the mrde is obtained.

Table 3 shows the numerical solutions of the mrde, calculated using the gp
and rk methods. Since this problem has an explicit solution, the gp solution
is equivalent to the exact solution.

5 Conclusion

The optimal control for the linear neuro ts fuzzy singular system is obtainable
with the gp approach. To obtain the optimal control, the mrde solution is
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Table 3: Solutions of mrde.
rk solution gp solution

t k11 k12 k11 k12
0.0 0.0002 −0.0004 0.0002 −0.0004
0.4 0.0014 −0.0022 0.0013 −0.0022
0.8 0.0068 −0.0112 0.0066 −0.0109
1.2 0.0339 −0.0543 0.0329 −0.0536
1.6 0.1715 −0.2532 0.1683 −0.2522
2.0 1.0000 −1.0000 1.0000 −1.0000

computed using a novel and nontraditional gp approach. For a numerical
example, the accuracy of the solution computed with the gp approach is
qualitatively better than the rk solution. In this example, the obtained gp
solution is equivalent to the exact solution.
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