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Abstract

A Bayesian model selection procedure is applied to data on 90 women
with metastatic breast cancer. Protein covariates are measured on nu-
cleus, cytoplasm, membrane, and stroma of primary breast carcinoma
and lymph node metastasis tissue. Multiple imputation is performed
to deal with missing data. Zellner’s g-prior is used in the Bayesian vari-
able selection procedure. The model space is reduced using posterior
variable inclusion probabilities, and then posterior model probabilities
are used to derive a candidate set of models. Bayesian model averaging
is employed to robustly estimate survival time, and the goodness of fit
of the derived model assessed by the correlation between estimated and
observed survival times. The results show evidence of proteins having
different rules in different parts of the tissue cell with respect to patient
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survival. Therefore, a recommendation is given on which part of the
cell to observe certain proteins for prognosis. The models obtained are
robust toward censoring and showed correlations between the observed
and the predicted data between 0.7 and 0.84.
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1 Introduction

Breast cancer is the most prevalent type of cancer in women worldwide [2]
and is the second most common cause of death by cancer [5]. Identification of
important factors affecting the patient’s condition might help in determining
treatments that reduce mortality. Clinical evidence suggests that a patient’s
disease outcome could be inferred from the molecular phenotype of the
disease [16, 17], raising the possibility of clinically useful biomarker tests.
Moreover, as indicated by Adams et al. [1], age is a potential influential factor
in breast cancer, so age at the time of tumour retrieval is also considered.
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This study aims to find a model that captures and explains the relationships
between observed characteristics. However, poor methods have been applied
in modelling the prognostic factors of cancer [13]. In regression modelling,
with time to event as the corresponding response, Cox models are favourable
as they are flexible in the distributional assumption regarding the survival
experience [10]. However, an underlying proportional hazard assumption is
often ignored, which can lead to incorrect conclusions.

A parametric multivariate regression based on the Weibull distribution is
proposed to identify the prognostic factors. This identification of influential
prognostic factors is an important step in deriving a model that provides
accurate predictions of patient survival. Bayesian variable selection procedures
are used [11, 12, 15, 20].

It is possible to have several reasonable models for one data set. Robust
predictions are expected to be obtained by weighting the predictions from
each reasonable model by the relative evidence for each model. This approach
is termed Bayesian model averaging [3, 6, 7, 8, 9, 18] and is employed in this
article as a prognostic tool.

This study is undertaken in order to identify the significant protein biomarkers
related to the survival of metastatic breast cancer patients. Moreover, it also
examines whether protein biomarkers measured in two tissue types (that is,
metastasis and primary) have similar patterns in predicting the survival of
the patient. More specifically, since identical measures were undertaken in
four cell locations (namely nucleus, cytoplasm, membrane and stroma) in
both tissue types, it is interesting to evaluate whether identical measures are
needed in all four cell locations. To our knowledge, this is the first study that
conducts thorough and detailed analysis on protein biomarkers measured in
different cell locations in two tissue types.
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2 Methods

2.1 Subjects

Secondary data from McCosker [14], containing measurements on 90 patients
with metastasis breast cancer are used in the analysis. At the metastasis
stage, the cancer has already spread to other body parts distinct from the
original site of cancer formation. In this study, two tissues are examined,
primary breast carcinoma (termed primary, which is in the breast where
the cancer cells began) and lymph node metastasis (termed lnmet, which
is in parts of the body other than the breast where the cancer cells have
spread). Tissue contained in tissue microarray cores were collected from
the formalin-fixed paraffin-embedded archival carcinoma specimens. In each
tissue, measurements of protein covariates were conducted in four cell locations
(termed local): nucleus, cytoplasm, membrane, and stroma. The event of
interest was time until patient’s death, measured from the time of tumour
retrieval.

2.2 Pre-processing procedure

Among 19 protein covariates presented by McCosker [14], five are missing
more than 60 percent of data, and thus were excluded from the analysis. The
exclusion avoids biased imputed values [4]. The protein covariates included
are: β1 integrin, claudin-1, oestrogen, fibronectin, human epidermal growth
factor receptor 2 (her2), insulin-like growth factor type II receptor (igf-
iir), mitogen activated protein kinase (mapk), phosphorylated akt (p-akt),
phosphorylated mitogen-activated protein kinase (pmapk), progesterone,
enhancer-of-split and hairy-related protein 2 (sharp-2), stratifin, total-akt/
protein kinase B 1 (Total-akt1) and vitronectin. In addition to the protein
covariates, as indicated by Adams et al. [1], age is a potential influence in
breast cancer, so age at the time of tumour retrieval is included in the study.
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In the included protein covariates, there is still some missing data, and
multiple imputation is applied to cope with this issue. Of the 90 patients
measured, 73 have measurements in lnmet tissue, and 84 have measurements
in primary tissue, and in each tissue measurements were taken in all four cell
locations. Thus, the data are segmented into eight data subsets based on the
tissue types and cell locations.

Prior to model building, the Weibull distributional assumption for the survival
time was examined. This was done by plotting log [− log S(t)] versus log t,
where S(t) is the survival probability obtained using the Kaplan–Meier esti-
mation, and t is the survival time. A straight line plot suggested that the
survival time fulfilled the Weibull distribution, and thus the Weibull model is
suitable.

Covariates were further selected based on the posterior probability inclusion
in the model. A reduced model space was constructed based on the selected
covariates and then the resulting models were selected for prediction based
on the posterior model probability. The goodness of fit was measured by the
correlation between the estimated and observed survival time.

In the modelling process, the first step is to perform Bayesian variable
selection, in order to identify significant covariates regarding patient survival
time. Model averaging is then used to form robust prediction, where each
reasonable model was weighted by its posterior model probability. Finally,
this derived model is compared to a ‘fixed pooled’ model consisting of all
covariates that have inclusion posterior probability > 0.2.

3 An overview of statistical method

The set of models considered is denoted by M. Each model is represented
by γ ∈ {0, 1}p, where p is the total number of covariates and γ = (γ1, . . . ,γp)
is the indicator of which covariates are included in the model for j = 1, 2, . . . ,p .
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Using this notation, a linear predictor is η =
∑

j γjXjβj , where Xj is the vector
or matrix corresponding to the regression parameter βj of the jth covariate.

Considering a particular model m ∈M , βm = (βm1
,βm2

, . . . ,βmp
) denotes

the vector of regression parameters for the model. According to Bayes
theorem, the conjugate distribution given some evidence x is f(βm | x) ∝
f (x | βm) f(βm) , and the choice of prior distribution f(βm) is important. We
consider Zellner’s g-prior [19], assuming a multivariate normal distribution
for βm . It is defined by specifying Vm =

(
XTmXm

)−1 in the conjugate prior
distribution,

f
(
βm | σ2,m

)
∼ N

(
µβm

, c2Vmσ2
)
, (1)

with mean µβm
and residual variance σ2. In the case of unavailability of prior

information, βm is assumed centred around 0, and setting c2 = n [19] where
n is the sample size gives the prior

f(βm | m) ∼ N
(
0,nVmσ2

)
. (2)

As for the residual variance, the prior is f(σ2) ∼ ig(a,b) , where ig is the
inverse Gamma distribution with shape and rate parameters a and b, respec-
tively.

For every indicator γ, the model indicator is assigned to

m(γ) =

p∑
j=k

γj2
j−k,

where k = 1 if a constant term is included in all models under consideration
and k = 0 otherwise. Given data y, the posterior probability of inclusion
for Xj is estimated via

f (γj = 1 | y) =
∑

γ\j∈{0,1}p−1

f
(
γj = 1,γ\j | y

)
, (3)

and the posterior model probability is estimated via

f̂ (m | y) =
1

T − B

T∑
t=B+1

I
(
m(t) = m

)
, (4)
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where T and B are the total and burn-in iterations, respectively, and I is the
indicator whether the model at iteration t, m(t), equals model m.

Upon obtaining several reasonable models, the predicted values are calculated
for each model, and then averaged using

ŷ =

L∑
l=1

f̂l (m | y)∑L
l=1 f̂l (m | y)

, (5)

where L is the number of models considered, f̂l and ŷl are the posterior
probability and the predicted value based on model l, respectively.

Data processing was undertaken using Winbugs14.1 For the normal dis-
tribution, the prior parameter mean is set to zero and the variance is set
to σ2 = 100. As for the inverse gamma distribution, the shape and rate
parameters are a,b = 0.01. In each process, the total number of iterations
was T = 110, 000 including B = 10, 000 iterations as burn-in.

4 Results

In the primary tissue, a high posterior probability inclusion for age is only
obtained in the nucleus, with the probability estimated to be 1.0. This
indicates that in the nucleus, a relationship between the age of a patient at
the time of tumour retrieval and protein covariates is detected. In contrast,
oestrogen’s posterior probability inclusion was estimated to be 1.0 in all
primary tissue, except the nucleus. This implies that in the presence of
other protein covariates, oestrogen’s role is significant in explaining patient’s
survival, but in the nucleus, this role is diminished. The role of igf-iir and
p-akt was also only significant in the nucleus.

Looking at other covariates, her2 and progesterone play a significant role in
all primary tissue locations except in the cytoplasm. However, claudin-1’s

1http://www2.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

http://www2.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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role is only observable in the cytoplasm. Interestingly, in other locations of
the primary tissue many protein covariates have an important role, but in the
cytoplasm only oestrogen and β1 integrin seem to be important covariates.
Another protein covariate, stratifin, is important only in the stroma with a
posterior probability inclusion of 0.67.

In the metastasis tissue, oestrogen and mapk show consistent importance in
all locations. sharp2 is also important in all locations except the nucleus,
but in the primary tissue it is important in the nucleus and the stroma. her2
in metastasis was only significant in the stroma. As for the relationship
between age and protein covariates, the metastasis tissue is more sensitive as
the relationship is detectable in the nucleus and the cytoplasm.

The model posterior probabilities are more concentrated in the primary tissue
than in the metastasis tissue, indicated by distinctively higher probabilities
in the primary tissue in each cell location. This suggests that in the primary
tissue, some sets of covariates are more distinctive than in the metastasis
tissue. On the other hand, in the metastasis tissue several reasonable models
provide similar values of the posterior probability, suggesting that different
sets of covariates provide equivalent information regarding patients’ survival.
In order to get a more detailed picture of the covariates’ role, an example
of output with significant β coefficients (at 0.05 significance level) obtained
from the first model in each location is given in Table 1.

According to Table 1, although all important protein covariates have a negative
effect on the patient’s survival, different locations provide different information.
In more detail, β1 integrin, claudin-1, oestrogen and her2 are important
factors in both primary and metastasis tissue. The importance of age in
the primary nucleus suggests that the protein covariates are related to age,
and this relationship is clearly observed in the nucleus of the primary tissue.
On the other hand, a ‘unique’ feature of lnmet tissue is that the effects of
pmapk, sharp2, and Total-akt1 are clearly observed. This implies that, in
the metastasis tissue, the number of important covariates is more than that
in the primary tissue. However, if age is also considered, then measurements
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Table 1: The selected influential variables (estimated coefficients).
Cell location Significant variables (estimated β)
Primary nucleus her2 (−.18), age (−.93)
Primary cytoplasm claudin-1 (−.55), oestrogen (−.67)
Primary membrane oestrogen (−.39), her2 (−.21)
Primary stroma β1 integrin (−.48), oestrogen (−.91)
lnmet nucleus claudin-1 (−.22), oestrogen (−.25), vitronectin (−.22)
lnmet cytoplasm β1 integrin (−.06), claudin-1 (−.25)
lnmet membrane claudin-1 (−.19), oestrogen (−.16),Total-akt1 (−.15),

age(−.05)
lnmet stroma her2 (−.60)

Table 2: Correlation coefficients between the observed and the estimated
survival times for the selected models (ρ1S and ρ2S) and for the ‘fixed pooled’
model (ρ1F and ρ2F) .

Cell location ρ1S ρ2S ρ1F ρ2F
Primary nucleus .70 .63 .71 .65
Primary cytoplasm .79 .77 .63 .79
Primary membrane .82 .79 .71 .65
Primary stroma .79 .77 .69 .62
lnmet nucleus .82 .81 .79 .71
lnmet cytoplasm .77 .68 .78 .69
lnmet membrane .84 .87 .78 .69
lnmet stroma .82 .82 .78 .69

of the primary tissue nucleus provide a better result.

The goodness of fit for each selected model is quite acceptable. Despite the
models consisting of only a small number of selected covariates (as listed in
Table 1), the correlations between the observed and predicted survival times
are ρ1S > 0.70 when all data is considered. When only non-censored data is
considered, the corresponding correlations are ρ2S > 0.6 .
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To assess the performance of the model, a ‘fixed pooled’ model is fitted to
all eight locals. The selected covariates are those with posterior inclusion
probability > 0.2, giving eleven protein biomarkers and age in the model
(fibronectin, p-akt, and pmapk were not selected). The correlations estimated
from the fitted ‘fixed pooled’ model are given in Table 2, where ρ1F is the
correlation between the observed and the predicted survival times for all data
and ρ2F is the correlation when only non-censored data is considered. Almost
all correlations estimated from the ‘fixed pooled’ model are less than those
estimated from the selected models with covariates given in Table 1, implying
that adding more covariates does not improve the models’ predictability.

5 Discussion

To derive a deep insight into factors contributing to metastasis breast cancer
patients’ survival times, a multivariate Weibull regression model was proposed.
The covariates were specific protein measures required for insulin-like growth
factor and extracellular matrix induced signalling events [14] as well as age
at tumour retrieval. This is the first study, to our knowledge, that conducts
thorough and detailed analysis based on different locations in two tissues,
primary and metastasis, and presents the role of protein covariates in various
locations.

With regard to the method and reporting of the data analysis as discussed
by Mallett et al. [13], we examined the survival time distribution to ensure
that the required distributional assumption for modelling was met by the
data. We also divided the data into eight data sets based on cell locations
and tissue types to allow us to identify the different influences of different
covariates in different locations. We employed Zellner’s g-prior to take into
account potential multicollinearity that might exist among covariates. Since
there was no external data and the size of data at hand was too small to split
for validation purposes, model validation was done by fitting a ‘fixed pooled’
model to the same dataset. Information from the few selected covariates were
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robust and better in predictability. This was indicated by higher correlations
of the observed and the predicted survival times for almost all models across
cell locations and tissue types compared to those estimated from the ‘fixed
pooled’ model.

It is possible that interactions exist between the protein covariates, as well
as other non-linear contributions to survival time. Further study such as
non-linear variable selection and identification of important interactions using
a Bayesian approach is worth further consideration.

Findings from this study can help clinicians better design breast cancer
examinations. The identification of the influences on specific tissues could
improve protein-based treatment for breast cancer patients. This might be
examined further regarding factors that should be considered prior to cancer
spreading, and possibly to design new treatments.
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