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On quantiles of the temporal aggregation of a
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applications

A. W. Barker1

(Received 18 December 2013; revised 24 March 2014)

Abstract

A stochastic volatility model is proposed for the daily log returns of
a financial asset based on conditional log quantile differences, assuming
the availability of high frequency intraday log returns. Calculation of
the conditional log quantile differences is performed with the assumption
that the intraday log returns follow a stable moving average process.
The use of conditional log quantile difference in the proposed model,
rather than conditional variance in standard models, offers an increase
in flexibility, with the potential for a different dependency structure
at different parts of the conditional distribution. The proposed model
makes use of high frequency intraday log returns which are generally
neglected in standard models. Formulae for the calculation of the
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conditional log quantile differences are provided and a method for their
estimation is described The proposed model was applied to the asx200
index from 2009 and 2010.
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1 Introduction

It is generally accepted that the volatility of a financial market asset return
displays a much stronger autocorrelation than the actual return [5]. A vast
collection of models, referred to as conditional heteroscedastic models, have
been proposed for modelling the volatility of financial market asset returns.
The most popular of these models is the generalised autoregressive conditional
heteroscedastic (garch) model [4] and its variations such as the igarch,
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egarch and egarch-m models [12]. Another class of models for modelling
the volatility of financial market asset returns is the stochastic volatility (sv)
model [11, 12, e.g.]. In this article we are mainly concerned with sv models.

Let Pd denote the closing price of a financial asset on day d and define the
logarithm of the daily return on that asset by

Yd = log(Pd/Pd−1) . (1)

The sv model for the sequence of log returns {Yd} , for d ∈ Z , is defined by

Yd = σdηd , (2)

log(σ2d) = µ+

k∑
j=1

φj log(σ2d−j) + ed +
m∑
j=1

ψjed−j , (3)

where σ2d is the conditional variance of the log return Yd , {ηd} is a sequence of
independent and identically distributed (iid) N(0, 1) random variables, {ed} is
a sequence of iid N(0, κ2) random variables independent of {ηd} and with
variance κ2, µ is the location parameter, the φ terms are the autoregressive
parameters with order k, and the ψ terms are the moving average parameters
with order m.

The sv model contains four sequences of random variables: {Yd} , {σ2d} ,
{ηd} and {ed} , of which only {Yd} is observable. The daily log return is
the temporal aggregation of the intraday log returns, which are also observ-
able. Given appropriate assumptions on the dependency structure of the
intraday log return process, the availability of high frequency intraday log
return data allows the estimation of σ2d directly. Thus estimation of the
parameters of (3) becomes possible, independent of (2).

However, empirical evidence from the asx200 index of the Australian Stock
Exchange, as shown in Section 5, suggests that generally the intraday log
return processes are not finite variance processes. Under these conditions, it
would require a somewhat contrived dependency structure for the temporal
aggregation of the intraday log return process to have a finite variance, that
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is, for σ2d to be finite. To overcome this problem, we propose using the log
quantile difference, which exists for all stationary processes, as the measure
of volatility.

We assume that the intraday log return process is a stable moving average
process and show in Section 2 how to calculate the log quantile difference of
the daily log return process under this assumption. A complete definition of
our model and assumptions are given in Section 3 and some brief comments
on estimation in Section 4. The results of applying our model to asx200
index returns are shown in Section 5.

2 Definitions

2.1 Stable moving average processes

Let {Xt} be the moving average process of order q,

Xt =

q∑
j=0

θjet−j , (4)

where t is the time, measured in units of the time between successive intraday
price reports, θ0 = 1 and {et} is an independently and identically distributed
stable (iids) sequence of random variables such that

et ∼ S
0
α(β,γ, δ) , (5)

using Nolan’s S0 parameterisation of stable distributions [10]. The parame-
ter α determines the heaviness of the tails of the distribution, with special
cases at α = 1 (Cauchy) and α = 2 (Gaussian). The parameters β, γ and δ,
respectively, determine the skewness, scale and location of the distribution.
The q+ 1 dimensional vector of moving average parameters is

θ = (θ0, . . . , θq). (6)
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Using the properties of the S0 parameterisation it can be shown [3] that the
distribution of the stable moving average process defined in (4) is

Xt ∼ S
0
α(β

(1),γ(1), δ(1)) , (7)

where

γ(1) =

(
q∑
j=0

|θj|
α

)1/α
γ , (8)

β(1) =

∑q
j=0 sgn(θj)|θj|

α∑q
j=0 |θj|

α
β . (9)

In this article we do not require the formula for δ(1).

2.2 Temporal aggregation

The temporal aggregation of {Xt} is

S
(r)
t =

r−1∑
i=0

Xt−i , (10)

where r is the aggregation level. When r = 1 ,

S
(1)
t = Xt . (11)

Henceforth, we refer to {S
(r)
t } as the temporal aggregation of {Xt} or the

aggregated process, and {Xt} is the base process.

The aggregated process is still a moving average process. For r > q ,

S
(r)
t =

r+q−1∑
j=0

cjet−j , (12)
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where

cj =


∑j

i=0 θi , j = 0, . . . ,q− 1 ,∑q
i=0 θi , j = q, . . . , r− 1 ,∑q
i=j−r+1 θi , j = r, . . . , r+ q− 1 .

(13)

Therefore, following the same argument used to derive the distribution in (7),
for r > q we obtain

S
(r)
t ∼ S0α(β

(r),γ(r), δ(r)) , (14)

where, after the substitution of (8) and (9),

γ(r) =

(∑r+q−1
j=0 |cj|

α∑q
j=0 |θj|

α

)1/α
γ(1), (15)

β(r) =

∑r+q−1
j=0 sgn(cj)|cj|α

∑q
j=0 |θj|

α∑r+q−1
j=0 |cj|α

∑q
j=0 sgn(θj)|θj|α

β(1) . (16)

In this article we do not require the formula for δ(r).

2.3 Log quantile differences

Let ξpi denote the pith quantile of some distribution function. At quantile
levels p = (p1,p2) , such that p1 6= p2 and 0 < p1,p2 < 1 , we define the log
quantile difference

ζp = log(|ξp2 − ξp1 |) . (17)

We assume that any random variable on which a log quantile difference is
calculated has a positive density at ξp1 and ξp2 . This assumption implies
uniqueness of the quantiles ξp1 and ξp2 and that the log quantile difference is
finite. Recall that stable distributions satisfy this condition.

The δ parameter of the S0 parameterisation of the stable distribution acts as
a location parameter. It can be shown [3] that the log quantile difference of
any stable distribution, being a function of the difference of two quantiles, is
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independent of the δ parameter, that is, it is completely determined by the α,
β and γ parameters.

3 Model description

Let {Xd;t} and {S
(r)
d;t} denote, respectively, the base and aggregated log return

processes of a financial asset on day d ∈ Z . Let ζ(r)d;p denote the log quantile
difference of {S(r)d;t} at quantile levels p = (p1,p2) . We define the log quantile
difference stochastic volatility (lqdsv) model at aggregation level r and
quantile levels p by

ζ
(r)
d;p = µ

(r)
p +

k∑
j=1

φ
(r)
j;p ζ

(r)
d−j;p + e

(r)
d;p +

m∑
j=1

ψ
(r)
j;p e

(r)
d−j;p , (18)

where {e(r)d;p} is a sequence of iid N(0, κ(r)p ) random variables with variance κ(r)p .
As is the case in the sv model, the volatility term ζ(r)d;p in the lqdsv model (18)
is an autoregressive moving average (arma) process.

The calculation of the quantiles of sums of general random variables is usually
very difficult, so, in order to make the lqdsv model more tractable and allow
the use of the theory in Section 2, we make the following assumptions on the
base process.

1. The intraday log returns comprising the base process {Xd;t} are calculated
over the same constant time period for all d ∈ Z .

2. The base process {Xd;t} is a stable moving average process.

Assumption 1 is not too onerous; however, Assumption 2 may be disputed.
A stable moving average process does provide the expected stylised facts of
heavy tails, some skewness and an absence of long term autocorrelations of
the asset returns. The implicit assumption that asset returns have the same



4 Model estimation C160

distribution throughout a trading day is less likely. Financial asset returns
commonly have higher volatility at the beginning of a trading day as overnight
information is being absorbed, compared to the middle of the day when the
traders are at lunch.

For an appropriate choice of aggregation level, rT , such that there are rT
multiples of the base process time period in each trading day, the daily return
is

Yd = S
(rT )
d;t . (19)

4 Model estimation

Given estimators for θd , αd , β
(1)
d and γ(1)

d , we use equations (15) and (16)
to calculate estimators for β(r)

d and γ(r)
d . Given estimators for θd , αd ,

β
(r)
d and γ(r)

d , we use the definition of the log quantile difference in (17)
to calculate an estimator for ζ(r)d;p . A derivation of the asymptotic distribution
of this estimator for ζ(r)d;p is beyond the scope of this article.

4.1 Stable distribution parameter estimation

McCulloch [9] proposed asymptotically normal estimators for the parameters
of a stable distribution from an independent sample, based on functions
of the empirical quantile estimators. Analytic formulae for the asymptotic
distribution were not derived, although a method for numerically calculating
the asymptotic distribution was shown.

The empirical quantile estimators from an S-mixing process sample are consis-
tent and asymptotically normal [8]. The class of S-mixing processes includes
stable moving average processes. It follows that the McCulloch stable distribu-
tion parameter estimators can also be used on samples from a stable moving
average process, although the asymptotic distribution of these estimators is
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different to the asymptotic distribution of estimators from an independent
sample [2].

4.2 Infinite variance moving average process
parameter estimation

Many of the common methods used for the estimation of finite variance
arma processes, for example Gaussian maximum likelihood, least squares and
Hannan–Rissanen, are not valid for the estimation of infinite variance arma
processes. Several alternative methods have been proposed, but the estimators
from many of these methods have complicated asymptotic distributions which
make them difficult to use [6, e.g.]. However, the self-weighted least absolute
deviation (slad) method was shown under various conditions to provide
estimators which are both consistent and asymptotically normal [13].

To estimate the order of a stable moving average process, we use the sample
autocorrelation function, which is a well-defined statistic even for infinite
variance processes [7]. However, the rate of convergence to the asymptotic
distribution is very slow, so for this analysis we estimate the order of a stable
moving average process to be the highest lag, up to a maximum of eight, of
the sample autocorrelation function which lies outside the Cauchy limit 95%
confidence interval [1].

5 Application to ASX200 returns

In this section we apply the lqdsv model to returns of the asx200 index.
The asx200 index is derived from the market capitalisation of the leading
200 companies listed on the Australian Stock Exchange (asx). Normal
trading days are Monday to Friday from 10 am to 4 pm. The asx200 index is
reported every 30 seconds throughout each trading day. Thus on a normal
trading day there are 721 values of the asx200 index reported, from which
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we calculate 720 intraday log returns over 30 second intervals. The intraday
log returns over 30 second intervals are used as the base process data in this
analysis.

The data used in this analysis is from the calendar years 2009 and 2010,
containing 507 trading days. The data was obtained from the Thomson–
Reuters Tick History service.

Unfortunately, on some trading days, there are less than 721 values of the
asx200 index reported. On Christmas Eve and New Years Eve, the asx closes
early at 2 pm, so there are only 481 values of the asx200 index reported on
those days. On other days, there are periods where the data is not reported
(missing data) or is reported at the same value for several minutes (frozen
data). Instances of missing and frozen data are not frequent and generally
only last for a few minutes. For the purposes of this analysis, the estimation
of ζ(r)d;p on trading days containing less than 721 reported values of the asx200
index, is performed assuming that all reported values are from consecutive
time intervals. Estimation of the log quantile difference of the daily return
was always done using an aggregation level of 720, regardless of the number
of intraday log returns over 30 second intervals that were reported on that
day.

Estimates of α, β(1) and γ(1) were calculated for each of the 507 trading days
in 2009 and 2010. Partial results for α and β(1) estimates are displayed in
Figure 1. Estimates of α were within the range (1.14, 2.00] with a median
value of 1.55 and eight trading days had an estimate of 2.00, that is, a
Gaussian distribution. The estimates of β(1) had a median value of 0.00 and
approximately 93% of the estimates were within the range (−0.60, 0.60) .

As shown in Table 1, on almost half the trading days the base process is
estimated to have order zero, that is, they are considered to be iid. In general,
even on those trading days where the base process is estimated to have a
high order, the sample autocorrelation functions exceed the Cauchy limit 95%
confidence interval at only two or three lags. Thus an autoregressive model
for these base processes would not be appropriate.
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(a) Jan 09 Mar 09 May 09
1.1
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Estimates of α

(b) Jan 09 Mar 09 May 09
−0.5

0

0.5

1
Estimates of β(1)

Figure 1: Estimates for (a) α and (b) β(1) from the base process of 30 second
intraday log returns of asx200 index data over the period 1-Jan-2009 to
30-April-2009
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(a) Jan 09 Mar 09 May 09
−5.5

−5

−4.5

−4

−3.5
Aggregation Level = 20, Quantile Level = (0.05,0.95)

(b) Jan 09 Mar 09 May 09
−6.5

−6

−5.5

−5

−4.5
Aggregation Level = 20, Quantile Level = (0.50,0.95)

Figure 2: Estimates for ζ(r)p from the base process of 30 second intraday log
returns of asx200 index data over the period 1-Jan-2009 to 30-April-2009 for
(a) r = 20 and p = (0.05, 0.95) ; and (b) r = 20 and p = (0.50, 0.95) .
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Table 1: Categorisation of the 507 trading days in 2009 and 2010 according
to the estimated order of the base process stable moving average model.

Order 0 1 2 3 4 5 6 7 8

No. Trading Days 238 46 27 5 72 90 7 6 16

Table 2: Parameter estimates of an arma(1, 1) model fitted to the estimates
of ζ(r)p for various aggregation and quantile levels.

Quantile Level Aggregation Level µ
(r)
p φ

(r)
1;p ψ

(r)
1;p κ

(r)
p

(0.05, 0.95) 20 −0.173 0.968 −0.656 0.092
720 −0.111 0.964 −0.696 0.230

(0.50, 0.95) 20 −0.189 0.969 −0.687 0.103
720 −0.133 0.965 −0.713 0.238

Using the methods described in Section 4, estimates were calculated for ζ(r)p
at various quantile and aggregation levels (Figure 2). An arma(1, 1) model
was fitted to the time series of ζ(r)p at various quantile and aggregation levels
using Gaussian maximum likelihood (Table 2). The parameters φ(r)

1;p have
similar values for each of the quantile and aggregation levels. The difference
values for ψ(r)

1;p and κ(r)p are largely due to the increased measurement error
associated with the estimation of ζ(r)p at higher aggregation levels. Similar
results were seen for other quantile and aggregation levels not shown here.
The values of φ(r)

1;p are close to 1, which suggests an autoregressive integrated
moving average (arima) model for this data might be appropriate.
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