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Abstract

In the probabilistic analysis of engineering systems, the design point
denotes a particular set of input parameters where the system response
is most likely to take a given design value. It provides important
information on the system behaviour and its sensitivity to input pa-
rameters. The design point is determined from the joint probability
distribution function (pdf) of input parameters. Mathematically, the
problem is equivalent to an isoperimetric problem: find a stationary
point of the joint pdf subject to the given value of the system response.
The proposed method depends on the response and the joint pdf being
parallel at the stationary point. This requires the projection of the
pdf gradient to be zero on the hyperplane orthogonal to the response
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gradient. Therefore, the design point is found by moving iteratively on
the response surface in the direction of a non-zero projection vector
until this vector vanishes. Convergence of this process is intuitively
guaranteed. The method can be implemented for any number of input
parameters. An example application is presented which demonstrates
finding the most probable design metocean conditions for a floating
structure. Such a problem is part of the response based analysis of
offshore systems, which provided the initial motivation for this work.
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1 Introduction

In the probabilistic analysis of engineering systems, design point is a set of
input parameters where the system response is most likely to take a given
design value. Within the structural reliability framework [1, 2], the input
parameters are basic variables such as external conditions, forces and material
properties, and the response may denote extreme motion, load or safety
margins. Finding the design point (or several such points for a complex
system) is an important part of probabilistic analysis.
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Finding the design point is not a new problem and several methods and
proprietary programmes are available for solving such a problem. Most
frequently, first order and second order reliability methods (form and sorm)
are used, where the design point is obtained from a general reliability analysis.
Such analysis involves a transformation of the basic variables to a set of
normalized standard variables and approximating the response with a linear
or quadratic function of the basic variables.

A similar problem is encountered in response based analysis (rba) of offshore
structures, which aims to predict extreme responses by analysing their statis-
tics in site-specific metocean conditions. After these responses are determined,
the inverse problem is solved: the most probable metocean conditions which
cause extreme responses are determined. These metocean conditions are used
to perform a more in-depth investigation of the system by detailed analysis
and model testing. The description of the rba methodology was discussed,
for example, by Standing et al. [4] and Tromans et al. [5]. Finding the design
points within rba is simpler than the general reliability analysis formulation
because both the design response and its probability are already known. This
provides motivation for a simpler numerical method to be developed. Similar
problems are also encountered in system operability assessments where com-
binations of the input parameters are sought under which the system is most
likely to become inoperable.

This article presents a method for finding the design point for a given system
response and probability density function (pdf) of input parameters. Section 2
formulates the problem, which is equivalent to an isoperimetric problem. In
Section 3 the problem is solved using the parallel gradient condition of the
response and pdf functions, which enables an efficient search process to be
set up. A numerical example presented in Section 4 demonstrates finding the
most probable design metocean condition for typical responses of a floating
structure. In Section 5 features and applications of the method are discussed.
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2 Problem formulation

Consider a system described by the response R(~x), which is a probabilistic
function of a random vector of n input parameters:

~x = (x1, x2, . . . , xn) . (1)

The vector components xi may be physical variables or their normalized
values. The response distribution function is generally conditional on ~x:

F(R | ~x) = Pr(r < R | ~x) . (2)

Randomness of the input parameters is described by the joint pdf p(~x).
Therefore, the probability that the response exceeds a design value Rd is

q =

∫
~x

∫
R>Rd

[1− F(R | ~x)]p(~x)dRd~x . (3)

The integration is performed over the complete ~x-space and over the range
where the response exceeds the design value. For a given q the corresponding
design value Rd is found from equation (3); this is a typical reliability analysis
formulation.

In the following it is assumed that the design response Rd and the associated
exceedance probability q are already determined, such that the response is
considered as a deterministic function. By formally using the probability
distribution

F(R) =

{
1 for R < Rd ,
0 for R > Rd ,

(4)

one re-writes equation (3) as

q =

∫
g(~x)<0

p(~x)d~x . (5)
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The integration is now performed over the ‘failure set’ defined by the failure
function

g(~x) = Rd − R(~x) . (6)

The failure function (6) defines the deterministic ‘failure surface’ in (n +
1) dimensions and separates ‘safe’ and ‘failure’ conditions. The ~x values
where g(~x) = 0 form the trace of the failure surface in the ~x-space, referred
to as the response surface. The problem is to determine a particular design
point ~xd on the response surface which provides the maximum contribution
to the probability integral (5). Therefore, the design point must be the point
of a conditional extremum of the joint pdf:

g(~xd) = 0 , p(~xd) = max {p(~x) | g(~x) = 0} . (7)

The design point ~xd defines the most probable combination of input parameters
for which system response Rd will occur.

3 Parallel gradient method

The problem (7) is interpreted as an isoperimetric problem, which is solved
by the method of Lagrange multipliers [6, 7]. One seeks the stationary point
of

f(~x, λ) = p(~x) − λR(~x) , (8)

where λ is unknown. Therefore, the design point is found by requiring

R(~x) = Rd ,
∂p(~x)

∂xi
− λ

∂R(~x)

∂xi
= 0 , i = 1, 2, . . . ,n . (9)

Therefore, the problem is reduced to a system of (n + 1) equations in the
~x-domain. In many applications the response surface R(~x) = Rd and pdf
function p(~x) can only be determined numerically by specialized software.
Therefore, an efficient method is required for solving system (9).
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Figure 1: Parallel gradient condition at the design point.

The proposed method is based on a property which follows immediately
from (9): at the stationary point ~xd the gradients of the response func-
tion ~∇R(~x) and pdf ~∇p(~x) must be parallel. The requirement of parallel
gradients is met if and only if the projection ~c of the gradient ~∇p(~x) on the
hyper-plane tangential to the response surface is zero (Figure 1). Otherwise,
for any point ~xp on the response surface the nonzero vector ~c indicates the
direction where the design point ~xd should be sought. This property enables
the search process to be set up by moving the point ~xp iteratively in the
direction of the projection vector ~c until this projection vector vanishes. The
iteration process is described by the following steps.

First, for a given point ~xp on the response surface the response gradient and
components of its unit vector ~a are calculated:

ai(~xp) =
1

|~∇R(~xp)|
∂R

∂xi
(~xp) , i = 1, 2, . . . ,n . (10)
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Then, the pdf gradient ~∇p(~x) and its projection ~c = (ck)
n
k=1 on the tangential

hyper-plane are calculated:

ck =
∂p

∂xk
(~xp) − ak

n∑
i=1

ai
∂p

∂xi
(~xp) , k = 1, 2, . . . ,n . (11)

Finally, the next iteration step moves the current point ~xp = ~x
(j)
p on the

response surface towards the next point

~x
(j+1)
0 = ~x(j)p +

~c(j)

|~∇p(~x(j)p )|
d(j) , j = 1, 2, . . . . (12)

Here, d(j) is a scalar parameter which controls the magnitude of the jth it-
eration step, and ~x

(j+1)
0 is the initial point of the next iteration. The value

of the control parameter is estimated by making a trial step with a trial
value d(j)T and using the result for the trial vector ~c(j+1)T to obtain the final
control parameter value

d(j) = d
(j)
T

c
(j)
k

c
(j)
k − c

(j+1)
Tk

, k = argmaxi=1,...,n |c
(j)
i | . (13)

In the above equation the control parameter d(j) is determined by linear
interpolation between the current and the trial points in order to minimize
the governing k-component of the projection vector ~c(j). The k-component
of the trial vector c(j+1)T is c(j+1)Tk . Other methods for optimizing the control
parameter may be possible, which should be investigated further.

The iteration process continues until the projection vector ~c becomes small
compared with the pdf gradient. The relative error measures the extent to
which the two gradients are parallel:

ε =
‖~c‖

‖~∇p(~xp)‖
. (14)

The relative error is equivalent to the tangent of the angle between the two
gradient vectors and should vanish at the design point.
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The search process must ensure that the response surface is accurately followed.
Because the initial point for the (j+ 1)th iteration ~x

(j+1)
0 defined by (12) may

deviate from the response surface it should be checked by calculating the
response R(~x(j+1)0 ) = R0 . If the difference |Rd − R0| is large, then the correct
point ~x(j+1)p is found by using the hyper-plane approximation for the response
surface (superscript (j+ 1) is omitted for brevity)

R(~x) = R0 + |~∇R(~x0)|
n∑
i=1

ai0(xi − x0) . (15)

Here ai0 for i = 1, . . . ,n are components of the unit gradient vector ~a0 of
the response at the initial point. Assuming that the hyper-plane (15) passes
through the response surface, the projection of the initial point ~x0 on this
surface is

~xph = ~x0 + (Rd − R0)~a0 . (16)

The response R(~xph) is now calculated and if the difference |Rd−R(~xph)| is still
large, then the hyper-plane approximation should be repeated. Alternatively,
the point (16) and the response gradient at the initial point are assumed to
be applicable to the response surface:

~x(j+1)p = ~xph , ~a(~xp) = ~a0(~x0) . (17)

The (j+ 1)th iteration is now performed by applying equation (12) to obtain
the next initial point ~x(j+2)0 . Each hyper-plane approximation requires (2n+1)
response calculations, and if iteration steps d(j) are not large and the response
surface is smooth, then one hyper-plane approximation per iteration is usually
sufficient. This enables the same response calculations to be used for both
the hyper-plane approximation (15) and for the projection vector (11), which
makes the iteration process reasonably efficient. In other cases, several hyper-
plane iterations may be required to accurately follow the response surface.

Convergence of the iteration process to the design point is intuitively guaran-
teed. The method of hyper-plane approximations enables the search process
to be started from any initial point ~x0 for any target response Rd . Depending
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on the system type, response properties and nature of the input parameters
(for example, peaks and valleys in the pdf p(~x)) several design points may
exist for the same response with different values p(~xd). The validity and
relative importance of such design points require engineering assessment. To
identify all design points, the analysis may need to be started from different
initial conditions to converge to the design point in the expected region.

4 Heave motion of a spar

This example is intended to illustrate the method on a simple system for
which the results are easily interpreted. The proposed method is used to
find the most probable design metocean conditions for heave response of a
simple floating structure, a vertical cylinder with large draft (spar). Under the
assumptions of linear wave theory and motions, heave motion of the spar ζ(t)
is described by the differential equation

(m+ µ)ζ̈+ λζ̇+ ρgAζ = F(t) . (18)

Here m is the mass of the structure, A is the water plane area, µ and λ are
the hydrodynamic added mass and damping coefficient, respectively, F(t) is
the wave exciting force, and ρ = 1025 kgm−3 and g = 9.81ms−2 denote the
sea water density and the acceleration of gravity, respectively.

Using the elevation of incident waves of amplitude r and frequency σ in the
complex form ζw(t) = re

iσt and simplifying the diffraction effects, one obtains
an approximate solution for the heave transfer function

ζ(t) = ζA(σ)e
iσt where ζA(σ) = r

(ω2 − fσ2) + 2iνσ

(ω2 − σ2) + 2iνσ
. (19)

Here the natural frequency ω, damping coefficient ν and inertia parameter f
are defined by

ω =

√
ρgA

m+ µ
, ν =

λ

2(m+ µ)
, f =

µ

m+ µ
. (20)
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Figure 2: Definition of heave motion of the spar.

Equations (18)–(20) describe a linear formulation for the spar heave motion
which is discussed, for example, by Morgan [9]. Two responses will be consid-
ered in this example: heave (absolute vertical motion) and relative vertical
motion between the wave profile and the spar (Figure 2). By using (19) one
expresses these responses in terms of the response amplitude operators (rao):

ζ(σ) =
|ζA|

r
=

√
(ω2 − fσ2)2 + (2νσ)2

(ω2 − σ2) + (2νσ)2
,

ζRA(σ) =
|ζRA|

r
=

σ2(1− f)√
(ω2 − σ2) + (2νσ)2

. (21)

Table 1 presents particulars of the spar, which are close to those of some real
structures of this type; rao (21) are plotted in Figure 3. Both rao display
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Table 1: Particulars and hydrodynamic properties of spar.

Description Notation Unit Value
water plane radius R m 10.97
draft D m 198.12
freeboard F m 16.76
damping ratio λ/λcrit - 0.05
water plane area A m2 378.3
mass including trapped water m kg 7.68.5× 107
added mass µ kg 8.5× 106
damping coefficient critical λcrit Nms−1 3.6× 107
damping coefficient actual λ Nms−1 1.8× 106
natural heave frequency ω rad s−1 0.21
natural heave period τ s 29.8
damping ratio ν - 0.011
inertia parameter f - 0.10

resonant behaviour in the vicinity of the natural heave frequency but their
behaviour outside the resonant zone is different: heave motion tends to zero
at high frequencies as short waves do not produce sufficient excitation; while
the relative motion becomes equal to the wave amplitude. These tendencies
are reversed at small frequencies.

The most probable maximum response of the structure over the three hour
duration zmpm due to an irregular sea state with the significant wave height Hs
and peak period Tp is

zmpm =

√
2M0 log

(
3× 60× 60

τz

)
with τz = 2π

√
M0

M2

. (22)

Here τz is the zero-up-crossing period, and M0 and M2 are two spectral
moments. Equation (22) is based on the assumption that each three hour
irregular sea state is a stationary Gaussian process described by the wave
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Figure 3: rao of heave and relative motion of the spar.

energy spectrum S(σ) and the response amplitudes follow Rayleigh distribu-
tions. Equations (21)–(22) define the response functions zmpm = f(Hs, Tp) for
the two responses of interest.

In this example responses depend only on the significant wave height Hs and
peak period Tp ; hence a joint metocean pdf of these two variables is used.
Bitner-Gregersen [8] developed an analytical formulation for the joint pdf of
Hs and Tp in the North Sea which utilized a Weibull marginal distribution
for Hs and conditional log-normal distribution for Tp . In this formulation
the long-crested sea states are described by a jonswap spectrum [9] and the



4 Heave motion of a spar C507

Table 2: Initial and most probable design metocean conditions for the 100-year
sea state with Ha and R in units of metres and Tp in seconds.

Initial point Design point Sensitivity
Response Hs Tp R Hs Tp R a1 a2
heave motion 16.91 17.44 6.75 15.16 17.82 6.75 0.22 0.97
relative motion 16.91 17.44 20.59 16.43 17.85 20.59 0.63 0.78

maximum 100-year return period sea state is Hs = 16.91m and Tp = 17.44 s.
Example 1 (Most probable conditions for heave and relative motion). The
maximum amplitudes of the heave and relative motion were calculated for
the maximum 100-year sea state by applying equation (22). Then the most
probable conditions under which the same responses may occur were deter-
mined. Results are presented in Table 2, which also shows the sensitivity
factors—components of the unit vector ~a of the response gradient at the
design point.

Figure 4 demonstrates the iteration process for the heave response. The
responses calculated for the maximum 100-year sea state are more likely to
occur in different conditions. The heave motion of 6.75m in particular will
most probably be generated by a less severe sea state with Hs = 15.16m,
which will occur more frequently than once in 100 years. This indicates that
the selected 100-year sea state is not the worst with respect to heave, and other
conditions should be examined. This can be done by calculating the response
at several points over the 100-year iform contour [3], or by conducting a
comprehensive response based analysis. Sensitivity factors indicate that the
heave is more sensitive to the peak period whereas the relative motion is
sensitive to both the wave height and the period.
Example 2 (Most probable condition for zero air-gap). Because the relative
motion of 20.59m predicted in Example 1 exceeds the static freeboard of the
spar (16.76m), the topside deck is likely to be exposed to wave loading. It is
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Table 3: Initial and most probable design metocean conditions for zero air-gap
with Hs and R in units of metres and Tp in seconds.

Initial point Design point Sensitivity
Response Hs Tp R Hs Tp R a1 a2
relative motion 16.91 17.44 20.59 14.35 16.78 16.76 0.77 0.64

useful to determine the most probable condition corresponding to the dynamic
air-gap being zero, that is, when the relative motion is exactly 16.76m. Results
of this analysis are presented in Table 3 and in Figure 5.

The most probable condition for the zero air-gap is found to be well below the
100-year isoline; it is in this condition the spar is most likely to experience
first wave loading on its topside. If the spar is intended to operate in harsher
environments, then following the same process one can determine a range
of negative air-gap conditions. These conditions can then be investigated to
quantify the wave loads and to assess the structure behaviour.

5 Concluding remarks

The proposed parallel gradient method for finding the design point is not
limited to a specific response and can be implemented for any number of
~x dimensions. The vector ~x may describe any parameters, including variability
in the response itself or variability in the system capacity.

Compared with form and sorm the proposed method is less general, as it
solves a narrower task. On the other hand, it does not involve any simplifying
assumptions for the response surface and avoids transformation of the ~x space
into normalized standard variables. Undertaking the search within the space
of physical variables has the benefit of ease of interpretation of the results.
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Figure 4: Most probable design metocean condition for the heave of 6.75m.

The method can be used as a starting point for a more general reliability
analysis. The design point and the sensitivity factors define the hyper-plane
in the ~x space, which approximates the response surface within the form
framework. These parameters enable the probability integral in (3) (or (5)) to
be calculated more accurately by using, for example, a Monte–Carlo technique
with importance-sampling Winterstein [2].



5 Concluding remarks C510

Figure 5: Most probable design metocean condition for relative motion of
16.76m.
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