
ANZIAM J. 55 (EMAC2013) pp.C1–C16, 2014 C1

Pulse-coupled neural network performance for
real-time identification of vegetation during

forced landing

D. J. Warne1 R. F. Hayward2 N. A. Kelson3

J. E. Banks4 L. Mejias5

(Received 19 December 2013; revised 5 March 2014)

Abstract

Safety concerns in the operation of autonomous aerial systems re-
quire safe-landing protocols be followed during situations where the
mission should be aborted due to mechanical or other failure. This
article presents a pulse-coupled neural network (pcnn) to assist in the
vegetation classification in a vision-based landing site detection system
for an unmanned aircraft. We propose a heterogeneous computing ar-
chitecture and an Opencl implementation of a pcnn feature generator.
Its performance is compared across Opencl kernels designed for cpu,
gpu, and fpga platforms. This comparison examines the compute
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times required for network convergence under a variety of images to
determine the plausibility for real-time feature detection.
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1 Introduction

Critical to the integration of unmanned aircraft (ua) in civilian airspace is
the capability to resolve on-board failures that can lead to an emergency
landing (or forced landing) scenario. A ua forced landing can occur as
a consequence of an unexpected event such as engine failure, hardware or
software malfunction, or poor weather conditions [10]. The wide adoption
of uas in civilian settings will be conditional on their ability to demonstrate



1 Introduction C3

equivalent levels of safety to that of manned aircraft [13, 3]. Hence, the
ability for a ua to handle autonomously a forced landing is one of the most
important technology enablers for their commercial use [10].

The goal of an autonomous ua forced landing system is to guide the aircraft
to a suitable landing site with minimal functioning systems in the safest
possible manner. A successful forced landing should minimise personal injury,
minimise damage to property, and avoid damage to the ua itself. Three major
components to this problem involve the selection of a suitable landing site,
the decision making process, and the guidance of the aircraft to the landing
site using minimal controls [10, 12, 9].

The detection, path planning, guidance and control aspects of this problem
were investigated by Mejais et al. [10, 12, 11]. However, finding a com-
putationally feasible solution to the landing site selection problem is still
very much an unsolved problem [9]. Therefore, in this article we focus on
the computational aspects associated with the landing site selection problem
using a pulse-coupled neural network (pcnn) model.

A suitable landing site should be an area with smooth terrain free of build-
ings, infrastructure and dense vegetation. In particular, the identification of
vegetation density is one of the most challenging aspects of the landing site
selection problem. In this regard, biologically inspired pcnns were shown to
be particularly effective when applied to vegetation classification. Li et al. [8]
applied a model based on pcnns to classify tree species for the purpose of
maintaining power lines. Our goal is to apply a similar model for texture-
based classification of vegetation density to the aerial imagery collected from
the uas on-board cameras.

This article addresses the computational aspects of the pcnn model through
the development of an Open Computing Language (Opencl) implementation
which are benchmarked on cpus, gpus, and fpgas. Our benchmark tests
show that an fpga implementation achieves high performance and power
efficiency for a low power overhead. As a result, real-time texture classification
for a ua embedded environment is feasible using pcnn. The results of this
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study also have wider applicability to pcnn-based algorithms on embedded
systems in general.

2 Background

2.1 Pulse-coupled neural networks

Pulse-coupled neural networks are neural models for image processing which
were biologically inspired by the structure of the visual cortex [4]. A pcnn
consists of a two dimensional array of integrate-and-fire neurons where each
neuron (i, j) receives stimuli from the (i, j)th pixel of an input image I, and
from its neighbouring neurons N(i, j). The pulsing neuron firing patterns are
applied to feature extraction and classification of images [14].

The model used by Li et al. [8] is based on the unit-linking pcnn as defined
by Gu et al. [7, 6]. Given an image I with K components, a unit-linking pcnn
is defined by

Fti,j =

K∑
k=0

wkI
t
i,j,k , (1)

Lti,j =

{
1 if

(∑
(x,y)∈N(i,j) Y

t−1
x,y

)
> 0 ,

0 otherwise,
(2)

Uti,j =
(
1+ βLti,j

)
Fti,j , (3)

Yti,j =

{
1 if Uti,j > θti,j ,
0 otherwise,

(4)

θti,j = θ
t−1
i,j − α+ VYt−1i,j , (5)

where t is time, wk is the weighting on the kth component of I, β is the weight
on the link input, α is the threshold attenuation, and V is the threshold scale.
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In equation (1) the pixel component stimuli are aggregated into a single neuron
input feed which is modulated by the activity in the neurons neighbourhood
in equations (2) and (3). The neuron fires if the modulated input exceeds
the neurons threshold (equation (4)). If the neuron fires, then the threshold
is increased in order to put the neuron into a refractory period (equation (5)),
otherwise the threshold decreases linearly by α.

Li et al. [8] designed a scale and rotational invariant vegetation classifier using
the pulse spectral frequency,

psft =
Nt

Nmax
,

Nt =
∑
i,j

Yti,j ,

Nmax = max
(
N0,N1, . . . ,NT

)
,

where T is the final iteration. It is expected that this classifier will significantly
assist in the selection of a landing site during a ua forced landing.

2.2 Heterogeneous computing and OpenCL

Despite the simplicity of the unit-linking pcnn model, it is still too computa-
tionally expensive to execute in a reasonable time frame on a low-powered
embedded processor as is required for a ua forced landing. Heterogeneous
computing (i.e., multiple processor architectures working together to solve
a single problem) could provide us with a feasible low power and high per-
formance solution. To investigate a heterogeneous solution, our development
was performed using Opencl [5].

Opencl is an open standard maintained by the Khronos Group for the pro-
gramming of heterogeneous computing systems [5]. Opencl consists of a
parallel programming device language, and a host application programming
interface (api) for communication with the parallel device. While the most
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common implementations of Opencl are for cpus and gpus (graphics pro-
cessing units), the standard is designed to be extended to other specialised
processors like digital signal processors (dsps) and field-programmable gate
arrays (fpgas).

fpgas are reconfigurable integrated circuits, consisting of programmable
look-up tables (lut), block ram (bram), and programmable interconnects.
An fpga may be configured to implement application specific accelerators at
runtime. Since fpgas run at very low frequencies (e.g., 200–400MHz), they
are also low power and ideal for embedded applications.

Traditionally, fpga development was a tedious digital circuit design process.
A custom processor needed to be designed clock-by-clock at the register
transfer level using a hardware design language. However, recently one of the
major fpga vendors, Altera, released an Opencl software development kit
(sdk) for their Stratix V series fpgas [1]. This provides an environment for
portable development across cpus, gpus, and fpgas.

3 PCNN implementation

In this section we present an Opencl implementation of the unit-linking
pulse-coupled neural network model. The digital circuit that results from
the Opencl code will also be discussed. The target hardware is the Altera
Stratix V fpga packaged with the Bittware S5-hq half-length pcie board [2].

3.1 OpenCL programming model

Opencl models a computing platform as a host sequential processor connected
to one or more parallel compute devices. Each compute device typically
consists of a number of compute units, which are further broken down into
simple scalar processing elements, as shown in Figure 1. The exact mapping
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Figure 1: The Opencl view of a computing platform.

of compute units and processing elements depends on the physical device
hardware; for example, a compute unit could be a single cpu core, or a gpu
streaming multi-processor. A processing element is a simple subunit of the
compute unit, such as a single element of a cpu simd unit.

In the more usual case of cpu or gpu compute devices, Opencl device code
will compile to micro code for the appropriate device, which will execute
on the available physical compute units and processing elements. This
should be contrasted with the fpga case where the physical mapping of
compute units and processing elements is generated by the Opencl device
code itself. The Opencl device code ‘compiles’ to a configuration image to
implement the required physical compute units and processing elements in
reconfigurable hardware. In other words, Opencl device code for a fpga
does not define executable code, but rather defines a co-processor architecture
which implements the algorithmic behaviour of the code natively.

3.2 The PCNN processor architecture

The executable object in an Opencl device program is a compute kernel.
Multiple kernel instances (called work items) will execute on processing
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Algorithm 1: Y = pcnn_kernel (F) : pcnn compute kernel logic
{F is the input feed in global memory}
{Define two local caches to reduce global memory I/O.}
cachein [16] [16]
cacheout [16] [16]
[iG, jG]← get_global_index {Index relative to image.}
[iL, jL]← get_local_index {Index relative to work group.}
cachein [iL] [jL]← F [iG] [jG]
synchronise {Wait until this work group of neurons is loaded.}
cacheout [iL] [jL]← neuron(cachein [iL − 1 : iL + 1] [jL − 1 : jL + 1])
synchronise {Wait until this work group of neurons is processed.}
Y [iG] [jG]← cacheout [iL] [jL]
return

elements. Work items form work groups; these will execute on the same
compute unit and have access to shared local memory resources. In the fpga
case, compute units and processing elements are generated which exactly
implement the behaviour of the work items and work groups.

The pcnn Opencl kernel code implements the behaviour of a single work
item within a work group. The work item of the pcnn is a single neuron,
and this generates a single neuron processing element. Neuron work items
are grouped into 16× 16 work groups to minimise global memory reads. The
pseudo-code for a single neuron is shown in Algorithm 1.

The resulting compute unit generated has 16× 16 neuron processing elements
and a local memory cache capable of storing an 18× 18 section of the current
neuron firing state; this cache is constructed using the fpga bram. Up to six
of these compute units can be implemented concurrently using the available
hardware resources on the Stratix V. Clocked at approximately 160MHz, this
processor has a theoretical peak performance of around 700 million neurons
per second. A diagram of the pcnn processor architecture is provided in
Figure 2.
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Figure 2: Overall pcnn processor architecture.

4 Performance

Due to the portability of Opencl, a performance comparison across multiple
architectures is done with relatively minor code modifications, such as the
addition of vendor specific kernel attributes to guide circuit synthesis. We
compared the performance of the pcnn model executing on a single core of an
Intel E5-2670 cpu (clocked at 2.6GHz), an NVidia Quadro 4000 gpu (clocked
at 950MHz), and the Altera Stratix V fpga (clocked at 168MHz). All host
and device code was compiled using default compiler options. This section
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Figure 3: pcnn performance comparison for cpu (Intel E5-2670), gpu (NVidia
Quadro 4000), and fpga (Altera Stratix V)

presents the results of our comparison in terms of raw compute performance,
power consumption and efficiency.

4.1 Compute performance

The comparison benchmark consisted of executing the pcnn model over the
well known Brodatz texture database1. The number of iterations was varied
from T = 250 to T = 3000 . Figure 3 shows the benchmark results.

In terms of runtime, the gpu was the best performing with a speedup
of approximately four times over the cpu code compiled with the Intel

1http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html

http://multibandtexture.recherche.usherbrooke.ca/original_brodatz.html
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compiler2(i.e., icc) running on a single core. The fpga solution performed
slightly better than the Intel compiled cpu version. This result is very
impressive for the fpga, especially when the processor clock speeds are taken
into acount. The cpu is clocked at 2.6GHz whereas the fpga is only clocked
at 168MHz; this means the fpga performs roughly 16 times more work per
clock cycle.

4.2 Power efficiency and consumption

In the context of a ua embedded system, power consumption and efficiency
is of the utmost importance [9]. Power efficiency is the amount of compute
performed for the amount of extra power consumed by the system, and
power consumption is the total power consumed under load. Figure 4 shows
measured power consumption at idle and under load, and Figure 5 shows the
efficiency of the compute benchmark results from Section 4.1. A standard
wall socket power meter (A Watts Clever EW-AUS5001, accuracy ±0.5%)
was used to take power measurements.

The fpga solution has comparible power efficiency to the gpu solution
and this fpga efficiency is achieved with a significantly lower total power
consumption than both gpu and cpu solutions. With such a low total power
footprint, the results for the fpga based pcnn show promise for vision-based
landing site detection on a ua embedded system.

5 Conclusion

By implementing the pcnn model in Opencl, we were able to target a
range of different processor architectures. The fpga based Opencl pcnn

2The Intel compiler cpu code attains a speedup of approximately 2× over the gnu
compiled version (i.e., gcc). Using vendor specific compilers is important for a fair
comparison.
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Figure 4: Power consumption comparison.
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Figure 5: Power efficiency comparison.
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implementation achieves the raw performance of a high performing server cpu,
the power efficiency of a workstation gpu, and a total power consumption
significantly lower than both cpu and gpu based pcnn models. The results
indicate the feasibility of using an fpga based pcnn model for real-time
vegetation classification for the purposes of landing site identification during a
ua forced landing. Furthermore, the feasibilty of pcnn solutions in embedded
systems in general is greatly enhanced by this work.
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