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Abstract

Homogenization and other multiscale modelling techniques empower
us to build efficient mathematical models for simulating materials with
complicated microstructures. However, the modelling rarely system-
atically derives boundary conditions for the macroscale models. We
build a smooth macroscale model for a two-layer one-dimensional lat-
tice diffusion system with rapidly varying diffusivity and finite scale
separation. We derive macroscale boundary conditions for this diffusion
problem. Our approach is applicable to a range of multiscale modelling
problems including wave equations.
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1 Introduction

We model and analyse diffusion in a microstructured two-layer one-dimensional
metamaterial of length L. The microstructure is defined by rapidly varying
diffusivity, both across and between the layers. The aim is to derive correct
boundary conditions for the macroscale continuum model of the diffusion.

Figure 1 shows the diffusion system on the microscale lattice with varying
diffusivity. The microscale differential equations for the ‘temperature’ un,j(t)
at time t, layer j = 0, 1 and lateral node n = 1, 2, . . .N− 1 are

h2
dun,0

dt
= an−1,0(un−1,0 − un,0) + an,0(un+1,0 − un,0) + an(un,1 − un,0),

h2
dun,1

dt
= an−1,1(un−1,1 − un,1) + an,1(un+1,1 − un,1) + an(un,0 − un,1), (1)

with microscale lattice spacing h = L/N . Dirichlet boundary conditions
define the temperature at the four endpoints of the material: u0,j and uN,j
for j = 0, 1 . The diffusivities an,j and an define the microstructure and
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Figure 1: Model a microstructured material of length L defined on a lattice
with microscale lattice spacing h; the variable diffusion has a lateral periodicity
of two: al,j and al for l = 0, 1 along a layer and j = 0, 1 between layers;
‘temperature’ un,j(t) varies in time and is defined at each lattice node n =
0, 1, . . .N and j = 0, 1 .

are constant between each node but vary with periodicity two in the lateral
index n, that is, for even n, an,j = a0,j and an = a0 , and for odd n, an,j = a1,j
and an = a1 . The diffusivites are also different in different layers j = 0, 1 .
Therefore, we have a total of six different diffusivities.

The diffusion system (1) simulates heat transfer in a metamaterial. Meta-
materials are artificial materials designed to have special properties that
may not be found in nature. Metamaterials are typically constructed from a
periodic arrangement of two or more microscopic materials with distinctly
different properties. For example, engineers manipulate the microstructure of
metamaterials so that they have negative permittivity and permeability and
thus a negative index of refraction (Eleftheriades and Selvanayagam, 2012;
Dong and Itoh, 2012). The diffusion system (1), illustrated in Figure 1, is a
metamaterial composed of alternating microscopic materials with distinctly
different diffusion properties. Macroscale modelling techniques which are
able to predict properties of proposed metamaterials enhance their research
significantly because manufacturing even a small amount of metamaterial can
be very expensive (Baron et al., 2013; Mei and Vernescu, 2010).

In the engineering of a metamaterial we are interested in its macroscale
dynamics rather than its microscopic response. Specifically, we are not
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Figure 2: The macroscopic temperature U(x, t) is defined as an average over
one period of the microscale temperature.

interested in the details of the diffusion between layers j = 0, 1 and at each
n = 0, 1, . . . ,N , but desire a model which describes the lateral diffusion
over a scale larger than the microscale lattice spacing h. So we must derive
a macroscale model for the diffusion system (1). Section 2 applies centre
manifold theory (Mercer and Roberts, 1990; Roberts, 2011) which, from the
microscale lattice diffusion system (1), determines the macroscale homogenised
diffusion pde

∂U

∂t
≈ A∂

2U

∂x2
, (2)

where constant A is an effective diffusivity and U(x, t) is the macroscale local
mean temperature of the material along the lateral dimension x.

Figure 2 illustrates the definition of the macroscale temperature as an average
of microscale temperatures:

U (x, t) := (u2n,1 + u2n+1,1 + u2n,0 + u2n+1,0)/4 at x = (2n+ 1
2
)h , (3)

where here, n = 0, 1, . . . , (N− 1)/2 . Section 3 derives macroscale boundary
conditions in the Robin form U + w4

∂U
∂X

= C , for constant w4 and C, at
x = 0,L for the macroscale model (2). The derivation proceeds by considering
the spatial evolution when moving away from either boundary into the
interior (Roberts, 1992). Figure 3 shows that our boundary conditions
with the macroscale model (2) give excellent agreement with the microscale
simulation. In contrast, the commonly used classic boundary conditions
perform poorly.
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Figure 3: The blue crosses are the microscale temperatures un,0 in the
top layer and the green crosses are those in the bottom layer, un,1. These
microscale temperatures are from the steady state analytical solution of
diffusion equation (1). The difference between the blue and green crosses at
the two ends are boundary layers of the diffusion system. The blue line is our
macroscale model (2) obtained using boundary conditions (22) that correctly
produce the interior solution. The red line is the macroscale model obtained
with classic boundary values.
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2 Centre manifold theory determines
macroscopic model

The first aim is to develop a macroscale diffusion pde (2) using centre manifold
theory. Each circle in Figure 2 captures one full period of the microscale
system. We call this repetitive unit a cell. We seek solutions in the form of a
Fourier transform

un,j(t) =

∫π/2
−π/2

ũl,j(k, t)eikhndk for l = n mod 2 ,

where l = 0, 1 , and j = 0, 1 , and k denotes a lateral wavenumber relative to
the microscale lattice spacing. The subscripts l and j split a potentially ‘spiky’
temperature un,0(t) and un,1(t) into four ‘smooth’ temperature functions:
ũ0,0(k, t) represents the temperature in the Fourier domain at the top left
node of a cell; and ũ1,0(k, t) , ũ0,1(k, t) and ũ1,1(k, t) represent the same, but
at the top right, bottom left and bottom right nodes of a cell, respectively.
This splitting allow us to see the slowly varying nature of the microscale
diffusion (1).

In Fourier variables the diffusion problem is now

h2
dũ0,0

dt
= a1,0(ũ1,0e

−ihk − ũ0,0) + a0,0(ũ1,0e
ihk − ũ0,0) + a0(ũ0,1 − ũ0,0) ,

h2
dũ0,1

dt
= a1,1(ũ1,1e

−ihk − ũ0,1) + a0,1(ũ1,1e
ihk − ũ0,1) + a0(ũ0,0 − ũ0,1) ,

h2
dũ1,0

dt
= a0,0(ũ0,0e

−ihk − ũ1,0) + a1,0(ũ0,0e
ihk − ũ1,0) + a1(ũ1,1 − ũ1,0) ,

h2
dũ1,1

dt
= a0,1(ũ0,1e

−ihk − ũ1,1) + a1,1(ũ0,1e
ihk − ũ1,1) + a1(ũ1,0 − ũ1,1) . (4)

Write the system (4) in matrix vector form by defining ~u := (ũ0,0, ũ0,1, ũ1,0, ũ1,1) :

h2
d~u

dt
= Lk~u , (5)
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where

Lk : =


−a1,0 − a0,0 − a0 a0 0 0

a0 −a1,1 − a0,1 − a0 0 0
0 0 −a0,0 − a1,0 − a1 a1
0 0 a1 −a0,1 − a1,1 − a1



+ e−ihk


0 0 a1,0 0
0 0 0 a1,1
a0,0 0 0 0
0 a0,1 0

+ eihk


0 0 a0,0 0
0 0 0 a0,1
a1,0 0 0 0
0 a1,1 0

 .

A useful subspace of equilibria for the system (4) is the wavenumber k =
0 and all temperatures identical ũ0,0 = ũ0,1 = ũ1,0 = ũ1,1 . Let L0 =
Lk|k=0 . The matrix L0 has an eigenvalue of zero, and the corresponding
eigenvector is (1, 1, 1, 1) (using the Strang notation that parentheses denote
the corresponding column vector). Because matrix L0 is symmetric, all
eigenvalues are real. Let λ be any eigenvalue corresponding to some eigenvector
~v = (v1, v2, v3, v4) which is not (1, 1, 1, 1) . Because the matrix L0 is real

λ |~v|2 = ~vTλ~v = ~vTL0~v

= −a0 (v1 − v2)
2
− a1 (v3 − v4)

2

− (a1,1 + a0,1) (v2 − v4)
2
− (a0,0 + a1,0) (v1 − v3)

2

< 0 .

Hence, any eigenvalue corresponding to an eigenvector other than (1, 1, 1, 1)
is real and negative. The strict inequality is because ~v cannot be a multiple
of (1, 1, 1, 1) . Then centre manifold theory assures us of the existence, rel-
evance and approximation of a slow manifold macroscale model in a finite
neighbourhood of the equilibria ~u ∝ (1, 1, 1, 1) and wavenumber k = 0 (Carr
and Muncaster, 1983; Roberts, 2011).

Since the equilibria all have wavenumber k = 0 , the neighbourhood of
validity includes all small wavenumbers k, which correspond to solutions
slowly varying in space x. Since the equilibria form a subspace, spanned
by (1, 1, 1, 1), the model is global in macroscale amplitude U. The macroscale
model is parametrised by any reasonable chosen measure of amplitude in each
cell (Carr, 1982). We choose the amplitude to satisfy (3) in each cell.
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2.1 First iteration to construct centre manifold model

The next step is to construct the centre manifold as a power series in wavenum-
ber k. Use the Taylor series expansion e±ihk = 1 ± ihk − 1

2
h2k2 + O(k3).

Rewrite the odes (5) as

d~u

dt
= L0

~u

h2
+


0 0 δ0,0 0

0 0 0 δ0,1
δ1,0 0 0 0

0 δ1,1 0 0

 ~u

h2
+ O(k3) , (6)

where

δl,j = a1−l,j

(
−ihk−

1

2
h2k2

)
+ al,j

(
ihk−

1

2
h2k2

)
.

Define the mth residual of the dynamical system equation (6) to be

Res[m] :=
d~u[m−1]

dt
− L0

~u[m−1]

h2
−


0 0 δ0,0 0

0 0 0 δ0,1
δ1,0 0 0 0

0 δ1,1 0 0

 ~u[m−1]

h2
,

where ~u[m−1] is the mth approximation of ~u. Substitute the initial approx-
imation, ~u[0] = Ũ(1, 1, 1, 1) such that dŨ

dt
≈ g[0] = 0 , to calculate the first

residual

Res[1] = −
Ũ

h2


a1,0

(
−ihk− 1

2
h2k2

)
+ a0,0

(
ihk− 1

2
h2k2

)
a1,1

(
−ihk− 1

2
h2k2

)
+ a0,1

(
ihk− 1

2
h2k2

)
a0,0

(
−ihk− 1

2
h2k2

)
+ a1,0

(
ihk− 1

2
h2k2

)
a0,1

(
−ihk− 1

2
h2k2

)
+ a1,1

(
ihk− 1

2
h2k2

)
+ O(k3) . (7)

We seek corrections, indicated by hats, to the approximations ~u[m] and g[m]

to give the next approximations:

~u[m+1] := ~u[m] + ~̂u , g[m+1] := g[m] + ĝ . (8)
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Substitute (8) and initial approximations ~u[0] and g[0] into (6) to compute
the update rule

Res[m] = L0~̂u− Eĝ , (9)

where E := (1, 1, 1, 1) . Since matrix L0 is symmetric, E is also the left
eigenvector corresponding to the zero eigenvalue. Premultiply (9) by ET with
residual (7) to find the solvability condition:

−
Ũ

h2

(
−a1,0h

2k2 − a0,0h
2k2 − a1,1h

2k2 − a0,1h
2k2
)
= −4ĝ .

Thus this first iteration yields the effective diffusivity as the arithmetic average
of the four lateral diffusivities (modified in the next iteration)

dŨ

dt
≈ g[1] = −

(a0,0 + a0,1 + a1,0 + a1,1)k
2

4
Ũ . (10)

Now substitute evolution (10) into the update equation (9) with the known
first residual Res[1] to compute ~̂u . The system of equations is deficient so we
need one more equation to find ~̂u. From the amplitude definition (3), adjoin
the amplitude condition ^̃u1,1 + ^̃u0,0 + ^̃u0,1 + ^̃u1,0 = 0 , to solve

[
L0
~1T

]
~̂u =

kŨ

h


a1,0

(
i+ 1

4
hk
)
+ a0,0

(
−i+ 1

4
hk
)
− (a0,1 + a1,1)hk/4

a1,1
(
i+ 1

4
hk
)
+ a0,1

(
−i+ 1

4
hk
)
− (a1,0 + a0,0)hk/4

a0,0
(
i+ 1

4
hk
)
+ a1,0

(
−i+ 1

4
hk
)
− (a1,0 + a1,1)hk/4

a0,1
(
i+ 1

4
hk
)
+ a1,1

(
−i+ 1

4
hk
)
− (a1,0 + a0,0)hk/4

0

 .

(11)
Solve the system of equations (11) by qr factorisation for ~̂u and hence
find ~u[1].

Knowing ~u[1] and g[1] , we compute the second residual Res[2]. The second
residual is O(k2) which indicates ~u[1] has errors O(k2).
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2.2 More iterations give more accuracy

Knowing the second residual Res[2] is O(k2) , we now compute corrections
of O(k2). Following the same procedure as in Section 2.1 one more iteration
gives the more accurate evolution

dŨ

dt
≈ −k2AŨ , (12)

where the effective macroscale diffusion coefficient is

A =
a0a1 (a01 + a00) (a11 + a10) + (a0 + a1)

∑1
j=0

∑1
l=0 a0,0a0,1a1,0a1,1/al,j

a1a0(a0,0 + a0,1 + a1,0 + a1,1) + (a1 + a0)(a1,1 + a0,1)(a1,0 + a0,0)
.

The inverse Fourier transform of the evolution equation (12) gives the
macroscale diffusion pde (2).

The evolution (12) has errors O(k4). We could apply more iterations to derive
a higher order model but will not do so here.

3 Spatial evolution gives accurate boundary
conditions

This section derives boundary conditions for the macroscale diffusion pde (2).
We define the temperature’s spatial structure, evolving across the spatial
domain, similarly to the evolving time-like variable described by Roberts
(1992).

3.1 Spatial evolution mapping T

The aim here is to derive the spatial mapping T shown schematically in
Figure 4. Then spatial boundary layers will be accounted for in the ‘dynamics’
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u0,0 u1,0 u2,0 u3,0 u4,0 u5,0 u6,0 u7,0
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~u0 ~u1 ~u2 ~u3

T TT

· · ·

Figure 4: At equilibrium, spatial structures are determined by the map T
from cell to adjacent cell. The map T is invariant across the domain because
of the choice of a unit cell and the periodicity of the problem.

of the map T . We are primarily interested in the long lasting, slowly-varying
modes as away from the boundaries the solution in the interior is slowly
varying—for example, the interior region of Figure 3. For slow spatial modes,
without much loss in accuracy, assume the time derivative term in equation (1)
is negligible: numerical experiments indicate this neglect is effective. Nontriv-
ial initial values are subject to future research. The lattice diffusion system (1)
simplifies to algebraic equations. These algebraic equations connect eight
nodes within any two adjacent cells:

0 = an−1,0(un−1,0 − un,0) + an,0(un+1,0 − un,0) + an(un,1 − un,0),
0 = an−1,1(un−1,1 − un,1) + an,1(un+1,1 − un,1) + an(un,0 − un,1),
0 = an,0(un,0 − un+1,0) + an−1,0(un+2,0 − un+1,0) + an−1(un+1,1 − un+1,0),
0 = an,1(un,1 − un+1,1) + an−1,1(un+2,1 − un+1,1) + an−1(un+1,0 − un+1,1), (13)

where the first cell contains un−1,j and un,j and the second cell contains
un+1,j and un+2,j , both with j = 0, 1 . Rearrange the homogeneous linear
system (13) into a 4× 4 inhomogeneous system

T


un−1,0
un−1,1
un,0
un,1

 =


un+1,0
un+1,1
un+2,0
un+2,1

 .
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This determines the spatial evolution map T shown in Figure 4. Let ~v1 , ~v2 ,
~v3 and ~v4 be the four eigenvectors of the spatial map T and µ1 , µ2 , µ3 and µ4
be the corresponding eigenvalues. For all microscale diffusivities an,j, the
spatial mapping T always has two eigenvalues of 1 and two eigenvalues
with a product of 1. Let µ2 = µ3 = 1 , and let µ1 < 1 < µ4 . As the
matrix T is not diagonalisable, let v3 be the generalised eigenvector satisfying
(T − I)~v3 = ~v2 . To justify the eigenspectrum, the eigenvector ~v2 = (1, 1, 1, 1)
and generalised genvector ~v3 = (1, 1,−1,−1) corresponding to two eigenvalues
of 1 are independent of the diffusivities. Furthermore, the determinant of
mapping T is one so the product of all four eigenvalues is one and hence
µ1µ4 = 1 . Assuming all diffusivities are physical and positive, µ1 and µ4 are
real and µ1 < 1 < µ4 .

Write the first cell ~u0 = (u0,0,u0,1,u1,0,u1,1) as a linear combinations of the
eigenvectors,

~u0 = c1~v1 + c2~v2 + c3~v3 + c4~v4 , (14)
for some coefficients cp where p ∈ {1, 2, 3, 4} , and where the first two compo-
nents of the vector (14), u0,0 and u0,1 , are the left end boundary values. The
microscale solution in the nth cell ~un = (u2n,0,u2n,1,u2n+1,0,u2n+1,1) is then

~un = Tn~u0 = c1µ
n
1~v1 + c2~v2 + c3(~v3 + n~v2) + c4µ

n
4~v4 . (15)

3.2 Macroscopic boundary conditions at x = 0

We derive the left macroscale boundary condition from the mapping T . At the
left end the coefficient c4 = 0 because if c4 6= 0 , then the growing mode c4µn4~v4
would generate a exponentially large value at the right end of the domain. So
the general quasi-equilibrium solution of system (1) near the left end is

~un = c1µ
n
1~v1 + c2~v2 + c3(~v3 + n~v2) . (16)

The prescribed boundary values are the first two components of the cell ~u0 ,

u0,0 = c1v11 + c2v21 + c3v31 ,
u0,1 = c1v12 + c2v22 + c3v32 . (17)
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Recall that equation (3) defined the macroscale temperature at the nth cell
as the arithmetic average of the microscale temperatures in the nth cell,
u2n,0 , u2n,1 , u2n+1,0 and u2n+1,1 . Within the interior of the domain of the
microscale system (1) µn1 is negligible (as µ1 < 1) so

U(x = 2nh+ 0.5h) = 1
4
~un · ~1 =

c2

4
~v2 · ~1+

c3

4
(~v3 + n~v2) · ~1 .

Therefore, the macroscale spatial derivative determined from linear interpola-
tion is

∂U

∂x
=
U(x = 2nh+ 2.5h) −U(x = 2nh+ 0.5h)

2h
=
c3~v2
8h
· ~1 . (18)

Extrapolation from the domain interior back through the boundary layer
towards the left end then estimates U on the left boundary:

U(x = 0) = U(x = 2nh+ 0.5h) − (2nh+ 0.5h)
∂U

∂x

= 1
4

[
c2~v2 + c3(~v3 −

1
4
~v2)
]
· ~1 . (19)

Adjoin macroscopic equations (18) and (19) to the microscale boundary
conditions (17), then using ~v2 = ~1 we obtain

v11 1 v31
v12 1 v32

0 1 1
4

(
~v3 · ~1− 1

)
0 0 1

8h
~v2 · ~1


c1c2
c3

 =


u0,0
u0,1
U|x=0
∂U
∂x

∣∣
x=0

 . (20)

System (20) defines four equations with three unknowns and is solvable when
the rhs is in the range of the lhs matrix. Ensuring the rhs is in the range
provides a boundary condition for the macroscale field.

Compute a basis vector ~w for the null space of the transpose of the left hand
side 4× 3 matrix in equation (20):

~w =


−w1 (a0,a1,a0,0,a0,1,a1,0,a1,1,N)

−(1−w1)
1

w4 (a0,a1,a0,0,a0,1,a1,0,a1,1,N)

 , (21)
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where the vector is normalised so that the third component is one. Vector ~w
always exists as the matrix in equation (20) is a 4×3 matrix so the null space
is never empty. Premultiply (20) by ~wT to obtain zero on the lhs. Thus the
rhs provides the boundary condition at the left end of the domain:

U+w4
∂U

∂x
= w1u0,0 + (1−w1)u0,1 . (22)

This Robin boundary condition generates the accurate macroscale solution in
the domain interior of Figure 3.

Computer algebra shows w4 is a complicated function, but is O(1/N). Thus
for N large the coefficient w4 ≈ 0 in the boundary condition (22). The
boundary condition then reduces to the classic Dirichlet condition U =
w1u0,0 + (1−w1)u0,1 (Mei and Vernescu, 2010; Pavliotis and Stuart, 2008).

3.3 Macroscopic boundary conditions at x = L

We derive the right macroscopic boundary condition using a similar approach
as in Section 3.2. The only modification of the methodology is to interchange
the role of c1 and c41. The decaying mode coefficient is zero (c1 = 0) when
dealing with the right boundary, otherwise the left boundary value would
be exponentially large. We multiply cells by T−1 when considering evolution
from the right to the left. In the core µ−n

4 is negligible. Following the same
procedure in Section 3.2, we get the corresponding boundary condition at the
right.

1Another approach is to execute the same spatial analysis on matrix T−1. This corre-
sponds to using a new opposite coordinate system that increases from right to left.



4 Result and conclusion C232

4 Result and conclusion

We ran numerous numerical examples to verify our analytical results. Figure 3
shows one example with N = 25 . The lateral diffusivities in this example are
a0,0 = 0.5 , a0,1 = 0.4 , a1,0 = 0.3 and a1,1 = 0.1 , whereas the cross diffusivities
are smaller at a0 = 0.05 and a1 = 0.02 . The microscale boundary conditions
are u0,0 = −5 , u0,1 = 0 at the left end, and uN,0 = −13 , uN,1 = 4 at the
right end. The boundary conditions for this particular case are symmetric

U+ 0.04
∂U

∂x
= 0.67un,0 + 0.33un,1 , for n = 0,N . (23)

With these boundary conditions the macroscale solution is not influenced by
the boundary layers and produces an accurate fit to the microscale solution
within the interior of the domain, thus better describing the global behaviour
than the solution with classic boundary conditions (22) with w4 = 0 .

The approach developed here is readily modified to more complicated problems
such as wave equations and beams with microscale metamaterial structures.
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