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Abstract

Classical considerations of stability in ode initial and boundary
problems are mirrored by corresponding properties (stiff stability, di-
stability) in problem discretizations. However, computational cate-
gories are not precise, and qualitative descriptors such as ‘of moderate
size’ cannot be avoided where size varies with the sensitivity of the
Newton iteration in nonlinear problems, for example. Sensitive New-
ton iterations require close enough initial estimates. The main tool
for providing this in boundary value problems is continuation with
respect to a parameter. If stable discretizations are not available,
then adaptive meshing is needed to follow rapidly changing solutions.
Use of such tools can be necessary in stable nonlinear situations not
covered by classical considerations. Implications for the estimation
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problem are sketched. It is shown how to choose appropriate bound-
ary conditions for the embedding method. The simultaneous method
is formulated as a constrained optimization problem. It avoids explicit
ode characterization and appears distinctly promising. However, its
properties are not yet completely understood.
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1 Introduction

The stability of the solution of the initial value problem (ivp) for systems of
ordinary differential equations has been studied extensively. There is a cor-
responding theory for numerical schemes which emphasizes the importance
of stiff stability in computing solutions of these problems. Stiffly stable for-
mulae permit the evaluation of slowly varying solutions on a grid appropriate
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to the required solution rather than on one capable of accurately following
the most rapidly decaying solutions supported by the differential equation.
However, computational problems can have requirements to produce numer-
ical results for problems with solutions which involve both growth and decay
and so may require fine grids and adaptive meshing procedures. Boundary
value problems (bvp) involve a global statement which makes corresponding
results more elusive, but problems which are similar in kind occur. The anal-
ogous property here is called di-stability. This permits the required solution
to be evaluated on an appropriate grid rather than one determined by the
most rapidly varying solutions The estimation problem is an inverse problem
somewhat akin to the bvp. It arises in trying to quantify system proper-
ties using information obtained by observing solution trajectories, typically
in the presence of noise. Important in applications, the requirement here is
to clarify the role of intrinsic properties of the differential equation in the
well-determinedness or otherwise of the estimation problem solution.

The differential equation is written

dx

dt
= f (t,x) , (1)

where x ∈ Rm , f ∈ R1 × Rm → Rm , and the forcing function f is assumed
to have any required degree of smoothness. Boundary conditions have the
form

B0x(0) +B1x(1) = b , (2)

where b ∈ Rm and B0, B1 ∈ Rm → Rm . Rank conditions on B0 and B1

are necessary for the existence of a unique solution (see (6)). Boundary
conditions are separated if no row of (2) couples solution values at both
boundary points. This formulation contains the ivp as the special separated
case B0 = I and B1 = 0 . The ivp is distinguished because relatively weak
conditions are sufficient to guarantee a local solution. The general boundary
formulation also suffices for multipoint problems which can be reduced to
bvp form by mapping each of the subintervals into [0, 1].
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Conditions for the existence of solutions of the bvp are obtained by first
considering the linear differential equation

dx

dt
= A(t)x + q(t) . (3)

Associated with this equation are ivps for the fundamental matrix X (t, ξ)
satisfying

dX

dt
= A(t)X , X(ξ, ξ) = I , (4)

and the particular integral w(t, ξ) satisfying

dw

dt
= A(t)w + q(t) , w(ξ, ξ) = 0 . (5)

The solution of the bvp is now written by supposition

x = X(t, 0)x(0) + w(t, 0) ,

where x(0) must be chosen to satisfy the boundary value equations

(B0 +B1X(1, 0)) x(0) = b−B1w(1, 0) . (6)

This is satisfied provided B0+B1X(1, 0) has a bounded inverse. Solution con-
ditions in the nonlinear case are obtained by linearizing around an assumed
solution and applying the Newton–Kantorovich theory [6].

Knowledge of the fundamental matrix permits explicit solution represen-
tations to be written down in the linear case. In particular, the Green’s
matrix is

G (t, s) = X(t) [B0X(0) +B1X(1)]−1B0X(0)X−1(s) , t > s ,

= −X(t) [B0X(0) +B1X(1)]−1B1X(1)X−1(s) , t < s .

Note thatG is independent of the form of initial condition on the fundamental
matrix provided only that the result has full rank. The size of the Green’s



1 Introduction C903

matrix governs the sensitivity of the bvp solution to perturbations in q(t).
This is clearly important in stability considerations. The quantity

α = max
0≤t,s≤1

‖G(t, s)‖2 (7)

is called the stability constant .

An important related problem is the estimation problem. Here the ar-
gument of the forcing function f in (1) contains also a vector of parameters
β ∈ Rp ,

f ← f(t,x,β) .

This vector of parameters is to be estimated using information gained by
observing a solution trajectory in the presence of noise at a set of points
Tn = {t1, t2, . . . , tn} . This information is assumed to have the form

yi = Hx(ti,β) + εi , ti ∈ Tn , (8)

where yi ∈ Rk , k ≤ m , H : Rm → Rk has rank k, and εi ∼ N(0, σ2I) are
independent samples from a random process. Differences with the bvp arise
not only from the presence of the noise process, but also from a requirement
that a sufficiently rich set of observations be available. A minimum condition
assumed is that nk > m so the problem is formally strictly over-determined.
This means that the best that can be done in general is to seek a solution
that minimizes a goodness of fit criterion with respect to the observed data.
Here this criterion is assumed to be

F (β) =
n∑
i=1

‖yi −Hx(ti,β)‖22 . (9)

It can be interpreted either in a least squares or maximum likelihood sense.
The resulting optimization problem has two forms depending on the manner
of generating the comparison functions x(t,β).

Embedding Here boundary matrices B0 and B1 are selected in order to em-
bed the comparison function in a family of bvps. Now the appropriate
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right hand side vector b becomes a vector of auxiliary parameters to
be determined as part of the estimation problem. The selection of
B0 and B1 has to be specified a priori in a manner compatible with
stability constraints on the problem, and this approach has the further
disadvantage that a (in general nonlinear) bvp must be solved for each
set of function values required in (9) at each Newton iteration. How-
ever, it does separate the estimation and solution components of the
problem making it relatively easy to draw on existing software.

Simultaneous The idea is to impose a discretized form of the differential
equation as a set of equality constraints on the problem of minimiz-
ing F . Estimates of β and the state variables x(ti,β) are then gener-
ated simultaneously by solving the resulting constrained optimization
problem. Here it simplifies discussion to combine the state vector with
the parameter vector xT ←

[
xT βT

]
and to augment the differential

equation system with the additional equations dβ/dt = 0 . The simul-
taneous method is potentially more computationally efficient. However,
bvp implementation questions such as the selection of an appropriately
graded mesh become more complicated because the estimation and so-
lution components are now more closely coupled.

An important aspect of the estimation problem is the selection of the points
ti ∈ Tn . It is necessary to distinguish two classes of experiment.

1. One in which observations are not available outside a finite interval
which is assumed to be [0, 1]. This is the situation considered here. Full
information requires that Tn can be generated for arbitrarily large n.
These experiments are called planned if the sets Tn satisfy the condition

1

n

n∑
i=1

v(ti)→
∫ 1

0

v(t) dρ(t) as n→∞ ,

for all v(t) ∈ C[0, 1] . This requirement just reflects the requirement
that the non-negative density function ρ is associated with the mecha-
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nism which must be set in place to generate an unbounded number of
observations.

2. The alternative situation is one in which observations on a trajectory
for arbitrarily large time contain parametric information. An impor-
tant class of these problems is the class of stationary processes for which
a rather different and distinctly sophisticated body of theory has been
developed. One problem of this type which can be posed as an estima-
tion problem is that of determining frequencies. These are functions of
the coefficients in a linear ode with constant coefficients.

The stochastic aspects of the estimation problem has an important bear-
ing on the choice of Tn.

• The asymptotic analysis of the effects of noisy data on maximum like-
lihood estimates of the parameters shows that this gets small no faster
than O

(
n−1/2

)
under planned experiment conditions. A higher rate

(O
(
n−3/2

)
) is theoretically possible in maximum likelihood estimates

in the frequency estimation problem, but direct maximization is not
the way to obtain these quantities [12].

• It is not difficult to obtain ode discretizations that give errors at
most O (n−2).

This suggests that the trapezoidal rule provides an adequate discretization.
It has the form

ci(xc) = xi+1 − xi −
h

2
(fi+1 + fi) = 0 , i = 1, 2, . . . , n− 1 , (10)

with xi = x(ti,β) , xc the composite vector with sub-vector components xi,
and h the discretization mesh spacing. It is known to be endowed with
attractive properties [4].
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A loose thread to link the stability topics and the embedding problem is
provided by several examples involving the Mattheij equation [1]. This equa-
tion possesses a strong dichotomy which is the bvp analogue of ivp stability.
Numerical results illustrate the importance of the property of di-stability
which extends to the bvp context the requirement that the discretization
method be stiffly stable.

2 ODE stability

2.1 Initial value problem stability

Consider first the stability of the ivp

dx

dt
= f (t,x) , x(0) = b . (11)

Here, initial value problem stability (ivs) means that different solutions with
close initial conditions, x1(0) and x2(0), remain close in an appropriate sense.

• Let ‖x1(t)−x2(t)‖ remain bounded (→ 0) as t→∞ . This corresponds
to weak (strong) ivs. Note that systems with bounded oscillatory so-
lutions may well be weakly stable but the classification may not be
particularly useful.

• Computation introduces the idea of stiff discretizations which preserve
the stability characteristics of (11) in the sense that decaying solutions
of the differential equation are mapped onto decaying solutions of the
computational problem. The advantage is that the computation does
not have to follow rapidly decaying solutions in detail. This is one area
where there are genuine nonlinear results—for example, Butcher’s work
on bn-stability of Runge–Kutta methods [2].
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However, not all relevant ivps are stable. The classical bvp solution method
of multiple shooting provides an example [10]. This requires computation of
the multiple shooting matrix of the linearized equation:

−X(t2, t1) I
−X(t3, t2) I

. . . . . .

B0 B1

 .

The problem is that the ivp for computing X(ti+1, ti) could well be unstable
in both forward and backward directions when the bvp has a well determined
solution. This does not mean progress cannot be made. This is a consequence
of Dahlquist’s famous theorem [3], “consistency plus stability implies conver-
gence as h → 0”, which does not require ivp stability. However, its setting
implies exact arithmetic. The problem for practical computation is a form
of numerical instability. This occurs in trying to follow a decreasing solution
in the presence of rapidly increasing solutions. Rounding error introduces
components of the fast solutions, and they will eventually swamp the one
required. Compromise is necessary. Here this takes the form of restrictions
on the length of the interval of integration. This control in multiple shooting
is provided by the choice of the {ti}. Multiple shooting in this form appears
to require accurate computation of all solutions, and this is potentially a
weakness.

This discussion is readily illustrated in the constant coefficient case. Con-
sider the ode

f (t,x) = Ax− q .

If A is non-defective then weak ivs requires the eigenvalues λi(A) to satisfy
<{λi} ≤ 0 while this inequality must be strict for strong ivs. A one step
discretization of the ode (ignoring the q contribution) is written

xi+1 = Th (A) xi ,
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where Th(A) is the amplification matrix. A stiff discretization requires the
stability inequalities to map into the condition |λi (Th) | ≤ 1 . For the trape-
zoidal rule

|λi (Th)| =
∣∣∣∣1 + hλi(A)/2

1− hλi(A)/2

∣∣∣∣ ,
≤ 1 if <{λi (A)} ≤ 0 .

2.2 Boundary value problem stability

The generalization of ivs that is appropriate for linear differential equations
is provided by the property of dichotomy : de Hoog and Mattheij [5] wrote
the key article discussing the computational context. Only a weak form of
dichotomy is considered here. It requires that there exists a projection P
depending on the choice of X such that, given the complementary solution
sets

S1 ← {XPw, w ∈ Rm} , S2 ← {X (I − P ) w, w ∈ Rm} ,

then for all s, t

φ ∈ S1 ⇒
‖φ(t)‖∞
‖φ(s)‖∞

≤ κ , t ≥ s ,

φ ∈ S2 ⇒
‖φ(t)‖∞
‖φ(s)‖∞

≤ κ , t ≤ s .

This is the structural property that connects linear bvp stability with the
detailed behaviour of the range of possible solutions. However, the bvp is
specified on a finite interval. This means that there is always a bounded κ on
that interval provided the fundamental matrix is bounded, . The additional
feature in the computational context is that a modest κ is required for t, s ∈
[0, 1] . The key result is that if X satisfies B0X(0) + B1X(1) = I , then
P = B0X(0) is a suitable projection in sense that for separated boundary



2 ODE stability C909

conditions the choice κ = α is allowed where α is the stability constant.
There is an intimate connection between stability and dichotomy. Dichotomy
permits a form of generalization of A-stability to the bvp case.

• The dichotomy projection separates increasing and decreasing solutions
of the differential equation. Compatible boundary conditions pin down
rapidly decreasing solutions at 0, and rapidly increasing solutions at 1.

• The discretization needs similar property in order that the given bound-
ary conditions exercise the same control on the discretized system.

• This requires solutions of the ode which are rapidly increasing (decreas-
ing) be mapped into solutions of the discretization which are increasing
(decreasing) in magnitude.

This property is called di-stability in [7]. They show that the trapezoidal rule
is di-stable in the constant coefficient case. The argument is straightforward:

λ(A) > 0⇒
∣∣∣∣1 + hλ(A)/2

1− hλ(A)/2

∣∣∣∣ > 1 . (12)

Example 1 Mattheij suggested a problem which provides an interesting test
of discretization methods. Consider the differential system defined by

A(t) =

 1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t

 ,

q(t) =

 et (−1 + 19 (cos 2t− sin 2t))
−18et

et (1− 19 (cos 2t+ sin 2t))

 .
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Table 1: Boundary point values—stable. computation

h = 0.1 h = .01
x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000
x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

Here the right hand side is chosen so that slowly varying z(t) = ete satisfies
the differential equation. The fundamental matrix displays two fast solutions
and one slow solution showing that this system exhibits strong dichotomy:

X(t, 0) =

 e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t

 .

For boundary data with two terminal conditions, one initial condition, and
right-hand side chosen to match the exponential solution:

B0 =

 0 0 0
0 0 0
1 0 0

 , B1 =

 1 0 0
0 1 0
0 0 0

 , b =

 e
e
1

 ,

the trapezoidal rule discretization scheme gives the results in Table 1. These
computations are apparently satisfactory.

In contrast, posing two initial and one terminal condition:

B0 =

 0 0 1
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
0 0 0

 , b =

 1
e
1


gives the results in Table 2 The effects of instability are seen clearly in the
first and third solution components.

The feature of this example is the role of di-stability. Consider the trape-
zoidal rule denominator in (12). This suggests large and spurious amplifica-
tion is likely in case h = 0.1 ; but this is not evident in the stable computation.
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Table 2: Boundary point values—unstable computation.

h = 0.1 h = .01
x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000
x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

However, the unstable case corresponding to h = 0.1 does show more influ-
ence of instability than the case h = .01 . The small denominator in (12)
suggests the likely explanation.

2.3 Nonlinear stability

Stability in nonlinear problems becomes a property of the linear problem
governing the behaviour of perturbations about a current trajectory. In this
sense it is a local property. Easy nonlinear problems are associated with
relatively slow perturbation growth. Such problems can be expected to have
the property that Newton’s method applied to solve the discretized problem
will have a reasonable domain of convergence. The linear ivp/bvp stability
requirements are inflexible in the sense that solutions must not depart too
far from the classification as increasing/decreasing. Important conflicting
examples occur in the linearized equations associated with dynamical system
trajectories. These include solution trajectories which

• can have a stable character—for example, limiting trajectories which
attract neighbouring orbits;

• and have linearized systems which switch between increasing and de-
creasing modes in a manner characteristic of oscillatory behaviour. If
this switch is rapid then it will be difficult to satisfy the dichotomy par-
titioning inequalities with a modest bound. This is likely to make more
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difficult the solution of the nonlinear problem by Newton’s method.

Limit cycle behavior provides a familiar example that is of this type. Intrigu-
ingly it shares some of the properties of stationary processes in the sense that
observations contain trajectory information for all t.

Example 2 To exhibit limit cycle behaviour consider the FitzHugh–Nagumo
equations:

dV

dt
= γ

(
V − V 3

3
+R

)
,

dR

dt
= −1

γ
(V − α− βR) .

Solution components for α = .2 , β = .2 , γ = 1 are illustrated in Figure 1.
Note that the positive and negative components of the individual cycles are
not exact opposites.

Example 3 The Van der Pol equation is

d2x

dt2
− λ

(
1− x2

) dx
dt

+ x = 0 .

This provides a difficult ode example with difficulty increasing with λ. The
solutions here are exactly periodic. Stability is illustrated by convergence of
trajectories from nearby initial points to the limit cycle. Figure 2 illustrates
rapid convergence to the limit cycle for λ = 1, 10 computed using standard
Scilab code. Computational problems occur because of the need to follow
rapidly changing trajectories in detail. The clustering of integration points
near the approximately vertical section of each trajectory shows the impor-
tance of adaptive mesh selection. Note the rapid convergence to the limiting
trajectory showing this is certainly a stable situation.
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Figure 1: FitzHugh–Nagumo bvp solutions V and R.

Figure 2: Scilab plot of Van der Pol trajectories for λ = 1, 10 .
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Figure 3: Matlab plot of state variable for λ = 1000 , x1(0) = 2 .

Matlab also uses this example in demonstration software but the output
is less useful as it gives state information but not the derivative values for
the case λ = 1000 (Figure 3). This plot of a difficult case implies an excellent
ivp solver. The starting values (2, 0) used are rather special as

x1(0) = 2 +
1

3
αλ−4/3 − 16

27
λ−2 ln(λ) +O(λ−2) ,

where α = 2.33811 · · · .

Example 4 The Van der Pol equation is exactly cyclic so the problem of
computing a half cycle is cast in bvp form on the interval [0, 2] by making
the transformation s = 4t/T . The unknown interval length is treated as an
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additional variable by setting x3 = T/4 . The resulting ode system becomes

dx1

ds
= x2 ,

dx2

ds
= λ

(
1− x2

1

)
x2x3 − x1x

2
3 ,

dx3

ds
= 0 .

The appropriate boundary data are

B0 =

 0 1 0
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
1 0 0

 , b = 0 .

The nonlinear system has the trivial solution x = 0 so it is necessary to
choose appropriate nonzero initial estimates. Here this has been done by
taking the periodic solution for λ = 0 with x1(0) = 2 and x2(0) = 0 as the
initial estimate. This gives convergence for the Newton iteration for λ = 1
and continues to work for λ ≤ 5 . Continuation with ∆λ = 1 is used for higher
values. The fixed discretizations exemplified are h = .01 and h = .001 . This
is not ideal for this problem as the ivp computations have illustrated the
importance of adaptive meshing. The bvp results for λ = 10 , h = .001
are given in Figure 4. These reinforce the need for the use of appropriately
graded mesh selection.

2.4 Stability consequences

The ode stability conditions provide sharp distinctions—in part because they
are specifying global properties. Computational requirements force compro-
mise. In the ivp this is provided by various control devices: for example,
automatic step length control. There are two classes of computational sta-
bility problem:
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Figure 4: Van der Pol solution x1 and x2 for λ = 10 .

• The Dahlquist root condition [3] is not satisfied. In this case errors
grow with n and so are unbounded as h→ 0 . This occurs whether or
not the original problem is unstable.

• In unstable ivps a computed slow solution will be swamped eventually
as a result of the growth of rounding error induced perturbations which
in a worst case grow like the Gronwall Lemma bound γ exp(Kt). This
is the problem which multiple shooting seeks to control. This device
appears not be necessary in stable bvps if di-stable discretizations are
used.

In the bvp stability discussion the dichotomy considerations are restricted to
a finite interval on which we ask for ‘moderate’ κ. Here the individual terms
in the inverse of the multiple shooting matrix can be interpreted using the
Green’s matrix. If κ is large then the bvp will be associated with a sensitive
Newton iteration because the inverse Jacobian matrices must contain terms
of size O(κ). Available tools for overcoming this problem include:
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• use of adaptive mesh control in positioning discretization points—but
this may be difficult if good initial estimates are not available;

• adaptive continuation with respect to a parameter in order to move
from a known to a required bvp solution in a sequence of steps in
which the current solution provides a good enough initial estimate for
convergence of the Newton iteration at the next continuation incre-
ment.

3 The estimation problem

3.1 Estimation via embedding

The embedding form of the estimation problem sketched in the introduction
leads to a nonlinear least squares problem to minimize (9) for the unknown
parameters β and b. This can be solved by an application of the Gauss–
Newton method [9] once the form of the boundary conditions needed to
specify the embedding have been set. This will be done by noting that
a good choice should lead to a relatively well-conditioned linear system in
setting up the linear least squares problem for the Gauss–Newton correction.
To see what is involved note that the trapezoidal rule discretization of the
differential equation (10) has the form

0 = ci (xi,xi+1) = cii(xi) + ci(i+1)(xi+1) , i = 1, 2, . . . , n− 1 .

Here the state variable contributions enter additively. As a consequence the
gradient system has the block bi-diagonal matrix

C =


C11 C12

C22 C23

. . .

. . . C(n−1)n

 , (13)
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where Cij = ∇xj
ci . Consider the orthogonal Q times upper triangular U

factorization of this system with the first column permuted to the last place:
C12 C11

C22 C23

C(n−1)(n−1) C(n−1)n 0

→ Q

[
U Z

0 · · · D G

]
.

This step is independent of the boundary conditions. It permits a solution
representation for linear systems of the form

xi = Vix1 +Wixn + wi , i = 2, . . . , n− 1 . (14)

with unknowns x1 and xn. Factorization by orthogonal cyclic reduction asso-
ciates {Vi, Wi, wi} with solutions of the ode system of twice the order [11]:{

d

dt
+ AT (t)

}{
d

dt
− A (t)

}
z = · · · ,

where A is the coefficient matrix of the linear ode. Does a dichotomy result
for this system follow from dichotomy for the original? The result is true for
systems with constant coefficients. The orthogonal factorization suggested
here is not the same as cyclic reduction, but the performance appears similar.

If boundary conditions are inserted at this point then there results a

system for x1 and xn with matrix

[
D G
B1 B0

]
. Orthogonal S times lower

triangular L factorization provides a useful strategy.

[
D G

]
=
[
L 0

] [ ST1
ST2

]
It follows that the system determining x1 and xn is best conditioned by
choosing [

B1 B0

]
= ST2 .



3 The estimation problem C919

This choice of B0 and B1 depends only on the ode, but it does depend
on β in the estimation problem as a consequence. Its use is illustrated in
Example 5.

To set up the Gauss–Newton iteration let ∇(β,b)x =
[
∂x/∂β ∂x/∂b

]
,

ri = yi −Hx (ti,β,b) . Then the gradient of F is

∇(β,b)F = −2
n∑
i=1

rTi H∇(β,b)xi .

The gradient terms with respect to β are found by solving the bvps

B0
∂x

∂β
(0) +B1

∂x

∂β
(1) = 0 ,

d

dt

∂x

∂β
= ∇xf

∂x

∂β
+∇βf ,

while the corresponding terms with respect to b satisfy the bvps

B0
∂x

∂b
(0) +B1

∂x

∂b
(1) = I ,

d

dt

∂x

∂b
= ∇xf

∂x

∂b
.

Example 5 Consider the modification of the Mattheij problem with param-
eters β∗1 = γ and β∗2 = 2 corresponding to the solution x (t,β∗) = ete :

A(t) =

 1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cos β2t

 ,

q(t) =

 et (−1 + γ (cos 2t− sin 2t))
−(γ − 1)et

et (1− γ (cos 2t+ sin 2t))

 .
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Table 3: Embedding method: Gauss–Newton results for the Mattheij prob-
lem

H =
[

1/3 1/3 1/3
]

H =

[
.5 0 .5
0 1 0

]
h = .02, γ = 10, σ = .1

14 iterations
h = .02, γ = 20, σ = .1

11 iterations
h = .004, γ = 10, σ = .1

9 iterations
h = .004, γ = 20, σ = .1

8 iterations

h = .02, γ = 10, σ = .1
5 iterations

h = .02, γ = 20, σ = .1
9 iterations

h = .004, γ = 10, σ = .1
4 iterations

h = .004, γ = 20, σ = .1
5 iterations

In the numerical experiments optimal boundary conditions are set at the first
iteration. The aim is to recover estimates of β∗ and b∗ from simulated data
etiHe + εi , εi ∼ N(0, .01I) using Gauss–Newton, stopping when |∇Fz| <
10−8 where z is the predicted correction. Results are given in Table 3.

Here the effect of varying β and b proves negligible. The angle between
the initial conditions and the optimal conditions for the subsequent values of

β and b are determined by ‖
[
B1 B2

]
1

[
B1 B2

]T
k
− I‖F < 10−3 , k > 1 .

This example possesses a dichotomy so these results confirm the efficacy of
the embedding method for stable problems.

3.2 Simultaneous estimation

The simultaneous method outlined in the introduction leads to the optimiza-
tion problem:

min
xc

F (xc) ; ci (xc) = 0 , i = 1, 2, . . . , n− 1 , (15)
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where xc ∈ Rnm is the composite vector with block sub-vectors x1,x2, . . . ,xn ,
and where the individual state and parameter vectors are bundled together
to form composite state sub-vectors. Introducing the Lagrangian function

L = F (xc) +
n−1∑
i=1

λTi ci

permits the necessary conditions to be written

∇xi
L = 0 , i = 1, 2, . . . , n , c (xc) = 0 .

The basic algorithmic approach involves the use of Newton’s method or one of
its variants to solve this nonlinear system. The resulting system determining
corrections dxc and dλc is

∇2
xxLdxc +∇2

xλLdλc = −∇xLT , (16)

∇xc (xc) dxc = C dxc = −c (xc) , (17)

where the block bidiagonal matrix C is defined in equation (13). The sparsity
is a consequence of the trapezoidal rule. Here ∇2

xxL is block diagonal while
∇2

xλL = CT is block bidiagonal. Nocedal and Wright [9] connect these
equations to necessary conditions for the solution of a quadratic program.
This leads to consideration of two main solution approaches.

Elimination The constraint equations (17) is solved for dxi , i = 2, . . . , n−
1 , in terms of dx1 and dxn as in equation (14). This permits the
quadratic program to be reduced to a problem in just these variables
with the constraint determined by the last row of the factored matrix.
Second order sufficiency conditions must still be satisfied for this re-
duced problem. This is discussed by Li, Osborne and Prvan [8] and
work they cited. This approach has been tested for boundary value
stable problems. Simpler elimination schemes are possible, but these
correspond essentially to simple shooting [1] and cannot be boundary
value stable.
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Null space An alternative approach which does not depend on a boundary
value formulation is based on the factorization

CT =
[
Q1 Q2

] [ U
0

]
.

Then the Newton equations are QT∇2
xxLQ

[
U
0

]
[
UT 0

]
0

[ QTdxc
dλc

]
= −

[
QT∇xLT

c

]
.

These are solved in the sequence

UTQT
1 dxc = −c , (18)

QT
2∇2

xxLQ2Q
T
2 dxc = −QT

2∇2
xxLQ1Q

T
1 dxc −QT

2∇xLT , (19)

Udλc = −QT
1∇2

xxLdxc −QT
1∇xLT . (20)

Sufficient conditions are just the second order sufficiency conditions

1. The matrix C has full row rank so the linearized constraints are
linearly independent.

2. The matrix QT
2∇2

xxLQ2 is nonsingular.

Remark 6 The null space method does not depend explicitly on techniques
associated with boundary value problem solution methods. Thus it is of
interest to ask if it possesses wider stability tolerances. Discussion of the
method’s properties is complicated by the presence of the Lagrange multi-
pliers for which initial estimates have to be provided. Typically this is done
by computing the generalized inverse solution to the necessary condition

CTλc +∇xF
T = 0

at the initial point [9]. Note this equation has formal similarity to the dis-
cretization of the adjoint differential equation and so could connect the null
space method back to stability questions.
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Table 4: Stability test: comparison of exact and computed values.

test results n = 11 particular integral QT
1 x

.87665 −.97130 −1.0001

.74089 −1.0987 −1.3432

.47327 −1.2149 −1.6230

.11498 −1.3427 −1.8611
−.32987 −1.4839 −2.0366
−.85368 −1.6400 −2.1250
−1.4428 −1.8125 −2.1018
−2.0773 −2.0031 −1.9444
−2.7309 −2.2137 −1.6330
−3.3719 −2.4466 −1.1526

.87660 −.97134 −1.0001

.74083 −1.0988 −1.3432

.47321 −1.2150 −1.6231

.11491 −1.3428 −1.8612
−.32994 −1.4840 −2.0367
−.85376 −1.6401 −2.1250
−1.4429 −1.8125 −2.1019
−2.0774 −2.0032 −1.9444
−2.7310 −2.2138 −1.6331
−3.3720 −2.4467 −1.1527

Remark 7 If the null space method is applied to the Mattheij problem
described in Example 1 with initial estimate xc = 0 then the first step solves
Cdxc = qc . It follows that QT

1 dxc = U−Tqc is independent of the boundary
conditions and thus should estimate the corresponding term derived from the
particular integral. That is

U−Tqc ≈ QT
1 vec

exp(ti)

 1
1
1

 .

Computed and exact results are displayed in Table 4 in the interesting case
h = 0.1 . The results suggest that the null space method can exploit di-
stability.
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4 In conclusion

It has been a deliberate intention to give the estimation problem more at-
tention than it commonly receives [1, 6, e.g.]. Even so, it has been the role
of stability questions that has been emphasized. The estimation literature
is mostly in the form of case studies. bvp formulations are often favoured.
However, it is not always clear that the ode is severely ivp unstable. It may
be just that the bvp formulation has better convergence properties in the
optimization problem. The estimation problem is a constrained optimization
problem whether formulated explicitly (Simultaneous) or implicitly (Embed-
ding). In neither context is it a completely conventional statistical estimation
problem. This aspect is beginning to attract attention [13]. Some work re-
mains to be done to fully prove the simultaneous method, but evidence of
its effectiveness is accumulating. Recent advances include adapting colloca-
tion techniques to fit seamlessly within the simultaneous framework, and a
large sample convergence rate result for the Bock iteration which involves a
Gauss–Newton-like simplification of the Newton equations.
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