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Stability analysis from fourth order evolution
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Abstract

Fourth order nonlinear evolution equations are derived for two
counter-propagating surface gravity wave packets in deep water in the
presence of wind flowing over water. The resulting equations are asymp-
totically exact and nonlocal. Stability analysis is made for a uniform
standing surface gravity wave train for longitudinal perturbation on
the basis of these equations. Graphs are plotted for maximum growth
rate of instability and for wave number at marginal stability against
wave steepness for some different values of dimensionless wind velocity.
Significant deviations are noticed between the results obtained from
third order and fourth order nonlinear evolution equations. This paper
has an application in rough waves.
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1 Introduction

One approach to studying the stability of finite amplitude surface gravity waves
in deep water is through the application of the lowest order nonlinear evolution
equation, which is the nonlinear Schrodinger equation. Zakharov’s [21] finite
amplitude wave trains to be subjected to modulational perturbations in two
horizontal directions both along and perpendicular to the direction of the
wave train. Davey and Stewartson [4] extended of this to water of finite
depth. Further extensions of this were made by Djordjevic and Redekopp [9]
to include capillarity and by Das [3] to include density stratification.

For small steepness, ka < 0.1, the predictions from the nonlinear Schr 6dinger
equation, when compared with Longuet-Higgin’s [16, 17| exact results, are
fairly accurate. Here k is the wavenumber and a is the amplitude of the wave.

But for steepness ka > 0.15 the predictions from the nonlinear Schréodinger
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equation do not agree with the exact results of Longuet-Higgins [16, 17].
Dysthe [11] has shown that a surprising improvement on these results relating
to stability of a finite amplitude wave can be attained by extending the
perturbation analysis one step further, that is adding the order €* term in
the nonlinear Schrédinger equation.

From this fourth-order evolution equation Janssen [15] has elaborated on the
Dysthe [11] approach by investigating the effect of wave-induced flow on the
long time behaviour of Benjamin—Feir [1]| instability and also applied this
equation to the homogeneous random field of gravity waves and obtained the
nonlinear energy transfer function found by Dungey and Hui [10]. Stiassnie [19]
shown that Zakharov’s [21] integral equation yields the modified or fourth order
nonlinear Schrédinger equation for the particular case of narrow spectrum.
Hogan [14] considered the stability of a train of nonlinear capillary-gravity
waves on the surface of an ideal fluid of infinite depth. He derived from
the Zakharov’s [21] equation under the assumption of a narrow band of
waves and including the full from of interaction coefficient for capillary-gravity
waves, an evolution equation for the wave envelope that is correct to fourth
order in the wave steepness. Fourth order nonlinear evolution equation for
deep water surface-gravity waves in different contexts and stability analysis
made from them were derived by Dhar and Das [6, 7, 8], Debsarma and
Das [5], Hara and Mei [12, 13|, Bhattacharyya and Das [2]. The third order
nonlinear evolution equations have been derived by Pierce and Knobloch [18§]
for two counter-propagating capillary gravity wave packets on the surface of
water of finite depth. The resulting equations are asymptotically exact and
nonlocal and generalize the equations derived by Davey and Stewartson [4]
for unidirectional wave trains.

In the present paper fourth order nonlinear evolution equations are derived
for two counter-propagating surface gravity wave packets in deep water in the
presence of wind flowing over water. So this paper extends of the evolution
equations derived by Pierce and Knobloch [18] for gravity waves to one order
higher for an infinite depth water and in the presence of wind flowing over
water.
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Figure 1: Maximum growth rate of instability I}, against wave steepness o for
some different values of dimensionless wind velocity v. Here y = 0.00129 for
all the graphs except for the two with v =0, vy = 0 written on the graph:
——, fourth order results; - - - -, third order results.

The evolution equations (35) and (36) remains valid when the wind velocity
is less than a critical velocity. This critical velocity is defined by the fact
that a wave becomes linearly unstable if the wind velocity exceeds this
critical velocity. On the basis of these evolution equations stability analysis
is investigated for a uniform standing surface gravity wave train with respect
to longitudinal perturbation. The instability condition (58) is obtained and
expressions for the maximum growth rate of instability and the wave number
at marginal stability (59) are derived.

Figures 1-4 plot for maximum growth rate of instability and for wave number
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Figure 2: Maximum growth rate of instability I, against wave steepness o
for some different values of dimensionless wind velocity v. Here y = 0.00129:
——, fourth order results; - - - -, third order results.

at marginal stability against wave steepness for some different values of
dimensionless wind velocity. In the fourth order analysis for waves with
sufficiently small wave numbers the maximum growth rate of instability first
increases with the increase of wave steepness and then it decreases with the
increase of wave steepness and finally vanishes at some critical value of wave
steepness beyond which there is no instability, while in the third order analysis
the maximum growth rate of instability increases steadily with the increase of
wave steepness. The growth rate is found to be appreciably much higher for
dimensionless wind velocity approaching its critical value. The wave number
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Figure 3: Wave number A at marginal stability against wave steepness « for
some different values of dimensionless wind velocity v. Here y = 0.00129 for
all the graphs except for the one with v =0, y = 0 written on the graph.

at marginal stability has also been plotted against wave steepness for some
different values of dimensionless wind velocity.

2 Basic equations

We take the common horizontal interface between water and air in the
undisturbed state as z = 0 plane. In the undisturbed state air flows over
water with a velocity u in a direction that is taken as the x-axis. We take
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Figure 4: Wave number A at marginal stability against wave steepness « for
some different values of dimensionless wind velocity v. Here y = 0.00129 for
all the graphs.

z = ((x,y,t) as the equation of the common interface at any time t in the
perturbed state. Let p and p’ be the densities of water and air respectlvely We
introduce the dimensionless quantities d) d) C (X, 9, 2), t, v and ¥ which
are, respectively, the perturbed velocity potential in water, perturbed velocity
potential in air, surface elevation of the water-air interface, space coordinates,
time, air flow velocity, and the ratio of the densities of air to water.

These dimensionless quantities are related to the corresponding dimensional
quantities by the following relations

kg/g (b7 EB/ - \/ kg/g ¢/7 (§7g52) - (kOXa koy, k'OZ)a
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(=kol, t=wt, v=+v/ko/gu, y=0p/p,

where k( is some characteristic wave number, g is the acceleration due to
gravity. Here after all the quantities will be written in their dimensionless
form with their over tilde (7) dropped.

The perturbed velocity potentials ¢ and ¢’ satisfy the Laplace equations

Vip=0 in —oco<z<C, (1)
Vip'=0 in (<z<o0. (2)

The kinematic boundary condition for water is

op _2C_ ap2cC 29 aC

_ hen 7 —
5z ot oxox ayoy “remz=6 (3)

which gives a necessary condition for equality of water velocity at the interface
normal to it to the normal velocity of the interface. The similar condition for

alr is
op’  09C 0C _ a¢'% . ad)’%

9z 0t 9x Ox Ox  Jy Oy

The condition of continuity of pressure at the interface gives
o0 o’ o0’ 1 [/ad\® [ad\® [ad)\’
{ st Yar TVt e ) Tlay) Tl e
N AN AN AN _
2{(ax) - . + 52 =0 whenz=¢(. (5)

Finally ¢ and ¢’ should satisfy the following boundary conditions at infinity
0

a—Z—>0 when z - —o0, (6)
o’
0z

when z = (. (4)

— 0 when z — +00. (7)
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Since the disturbance is assumed to be a progressive wave we look for solutions
of the equations (1)—(7) in the form

P=Po+ D  {Punexplilmps +ny)] + Py, expl—i(mi; + )]},

m,n=—co

(8)
where P stands for ¢, ¢’ and ¢; Pp; = kx — wt, Py = kx + wt. In the
summation on the right hand side of equation (8), (m,n) # (0,0). Here
G00, Pmns Pins Plos Prn and &1, are functions of z, x; = ex, y; = ey,
t; = et; Coo, Cmn and (,,, are functions of x;, y; and t;. The small
parameter € measures the weakness of wave steepness, which is the product
of wave amplitude and wave number. The sign * denotes complex conjugate.

The linear dispersion relation determining frequency w is
(1+7v)w? —2ywv +yv? — (1 —vy) =0. (9)

This equation gives two values

wi—<yvi\/r> (1+v), (10)

which corresponds to two modes and we designate these two modes as
+ and — modes. The positive mode moves in the positive direction of
the x-axis with a frequency (\/1 — Y2 —yv? + yv) / (14vy) while the neg-
ative mode moves in the negative direction of the x-axis with a frequency
(\/1 —v2—yv:— yv) /(1 4). If v is replaced by —v, then the frequency of
the positive mode becomes equal to the frequency of the negative mode. So
the results for the negative mode can be obtained from those for the positive
mode by replacing v by —v. Therefore we have made a nonlinear analysis
for the positive mode only and then we obtained the results for the negative
mode by replacing v by —v .

From the expression (10) for w4 we find that for linear stability, velocity v
should satisfy the condition

v <V (1—=v2)/y. (11)
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Thus our present analysis will remain valid as long as the dimensionless flow
velocity of the wind becomes less than the critical value /(1 —vy?)/y. For
air flowing over water y = 0.00129 and this critical value becomes 27.84. The
corresponding dimensional value of critical wind velocity is 872.05 cm/sec.

3 Derivation of evolution equations

On substituting the expansions (8) in equations (1), (2), (6) and (7), and then
equating the coefficients of exp[i(mi; + n,)] for (m,n) = (1,0), (0,1),
(2,0), (0,2), (1,1) and (—1,1) we get the following equations:

(622 - A‘““) Gmn =01 .
62
(622 B A‘2““> b =0 .
a mn
dgz —0 as z— —o0, (14)
a /
%%0 as z— 400, (15)
o\’ 02
where A%nn = {(m+ Tl) — l€a—Xl} — €2@ . (16)

The solutions of equations (12) and (13) satisfying boundary conditions (14)
and (15) respectively put in the following forms

(bmn = €Xp (Ang) Amn 5 (17)
cbwlnn = exXp (_Amnz) A;nn ) (18)

where A,y and A7, are functions of x;, y; and t;. For the sake of convenience
we take the Fourier transforms of equations (1), (2), (6) and (7) for (m,n) =
(0,0). The solutions of these transformed equations become

cT)oo = €eXp (“_dl> Aoo ) (19)
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b = exp (—|]_<|Z) Al s (20)

where $og and ¢}, are Fourier transforms of ¢go and ¢f, respectively, defined
by

(oo, Go) = J J J (doo, o) exp [L(kxx1 + kyys — @ty)] dxq dy; dty

(21)
where k? = (k2 + l_ci), and where Agy and AJ, are functions of ky, ky and @.

On substituting the expansions (8) in the Taylor expanded forms of equa-
tions (3)—(5) about z = 0 and then equating the coefficients of exp[i(m; +
my)] for (m,n) = (1,0), (0,1), (2,0), (0,2), (1,1), (—1,1) and (0,0) on
both sides, we get

dbrun | 9 -
( 5, )Z_0+1{(m—n)w+lea—tl}Cmn—amn, (22)
(6([;%) +1{(m n)w—kieaitl}cmn
z=0
—iv{(m—l—n)—le%}Cmn:bmn, (23)
1

—i{(m—n)w “ea%} (Goan)oco + Ty {(m—n)w “ea%} T

+ (1_Y)Cmn_1yv{(m+n) _leaixl} (d):n,n)z:o =Cmn - (24)
where amn, bmn and ¢ are contributions from unexpanded nonlinear terms
and ( ),—o implies the value of the quantity inside parentheses at z = 0. Now
for the above seven values of (m,n) we obtain seven sets of equations, in
which we substitute the solutions for ¢mn and 1., given by (17)—(20). For
the sake of convenience we take the Fourier transforms of the set of equations
corresponding to (m,n) = (0,0). The sets of equations corresponding to
(m,n) €{(1,0), (0, 1)}, (m,n) € {(2,0),(0,2), (1,1), (=1, 1)}, (m,n) = (0,0)
will be called, respectively, the first, second and third sets.
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To solve the above three sets of equations we make the following perturbation
expansions for the quantities Aqn, A/ and (mn for the above values

of (m,n): "
. Y% ePEFL (m,n) = (1,0),(0,1), 25)
T I, ePERL (myn) = (2,0),(0,2), (1,1), (—1,1),(0,0),

where E, stands for A, AL, and Cun.

On substituting the expansions (25) in the above three sets of equations and
then equating coefficients of various powers of € on both sides, we obtain
a sequence of equations. From the first order (that is, lowest order) and
second order equations corresponding to (22) and (23) of the first set of
equations we obtain solutions for A%), A/1(01)’ A%) , All(OQ) and Aé?, Ag(ll), Ag) ,
Ag(lg) respectively. Next, from the second order and third order equations
corresponding to (22), (23) and (24) of the second set of equations, we obtain
solutions for (Ay)', Ay’ G0 As', Ay’ G, (A, A, 43, Al AGyY,
G ) (AT AT G AT AR GV (AR AT B AL AT
Cf‘fl) respectively. Finally, from the second order equations corresponding to
equations (22), (23) and (24) of the third set of equations we obtain solutions
for (A(%), AE](OQ), Céﬁ)) and from the third order equation corresponding to (24)
of the third set of equations we obtain a solution for Cég). Following Pierce and
Knobloch [18] we use the following transformations of all perturbed quantities
in slow space coordinates and time

Ev"‘ =X1— Cgt17 Ev— =X + Cgtla n =Y, T = €t17 Ty = €2t17 (26)

where ¢y = (dw/dk)x—; is the group velocity. As we are going to derive
evolution equation correct up to O(e*) which is one order higher than the
evolution equation in the lowest order, we introduce one more slow time
variable Ty following Weissman [20]. The equations corresponding to (24) for
(m,mn) = (1,0) and (0, 1) of the first set of equations, which has not been used
in obtaining the above perturbation solutions put in the following convenient
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forms after eliminating A%ﬂ and A’ E:T)L, the details of which are shown in
Appendix A.

[w% +v (wy —vk)? — (1 —7) Aw} C10

= —iwiayy — iy (wy —vki) big — Ajpcio, (27)
@3+ (w1 =vk)* = (1= ) Aot | Cox
= —iwiag; — 1y (w1 —vky) bor — Apicor (28)

where aig, big, €10, Qg1, bo1 and c¢g; are contributions from nonlinear terms.

From equations (27) and (28) we get the following equations in three successive
orders starting from the lowest order two.

O(e?)
0o
E =0, (29)
Coy
— =0. 30
3E (30)

These two equations show that C%) and Céi) are independent of &_
and &, respectively.

O(e?)

acy ey ey
T, + 1Yo e + Y1 o2 + Y2 on?

=810 Gy’ + 82010 Gt ot (31)
L A 1 A i1
o1, 00, " Thagz TP o2

2 * *
=800 o)+ 805 e (32)

Ja R
204

+y
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O(e*)

Ay agl 02 02¢}y) 02457
1 o1, +1 T, +v1 aa%r "‘aaa ClO +Yo—=—— a D) +‘Yga£+aa_

¢y GRars (1)2 ,(2)* (1) (2) ,(1)*
+1 + 1y =01y Gy +201C G C
Y4 i 5aE+an2 1610 G1o 1610 G10 610
+ 82050 Loy Cor + 82050 G5 G + Hargenyen
. (1) ClO ClO C(()?*
+ 185080 ¢y 6€+ +1 54C1o 3E, + 185080 ¢y ra
. oy . Ll
106030 Cor” G+ 1070 G’ 5
d 1 d 1
(1) -1
2 F- — _—F
+ C10 {a£+ {k a£+(|C10| )} 0 {k aE,_(|C01| )}} )
(33)
oG Lok 02 62 27 G
Yo T on TV \ee T G+ on2 | V33E, 06
oy . % (1)2 ,(2)* (1) 5(2) ,(1)*
+1‘Y4 aag +W565—6n? = 51C01 C[)l +261C01 C01 C01
+ 82001 0o )+ 8201 G g+ 828y Cio i
. *ac(l) . 2ac(1)* . ac(l)*
109G Cor” G+ 10y 105 G
. *ac(l) . *ac(l)
1861 o g 187G G’ 5
(1) 0 1 0 1 1
2 F — _—F :
T P R E (U B e (<l
(34)

where F~1( ) is the inverse Fourier transform of the quantity inside the
parentheses.
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Now arranging different terms of equations (31)—(34) we obtain the following
fourth order nonlinear evolution equations for two counter-propagating waves.

C . aC(Q) 2 2 a2c(1)
-0 +1Y0 10 +‘Y1 Clo Yo—= 5 10

o, ot 2ez T ez on?
IS TSt 2 9\ o, 0% 0%¢;)
el T, TYi\Ge T )0 T T ae
S T e T
vt g g | = 8l P + 8l Py
+

1)2 ,(2)* 1 2 1) (1) »(2)* 1) ,(1)* »(2
€ [5140) Cio) + 251|C§o)|2cgo) + 52550) C(()I)C(()l) + 52&50) C((n) C(()l)

1006
0&_

12005

. oclt) . .
+ 8,021V + 1851 ) P20 + 1840 3 +id5cl) )
+

oL,

aCol aClo
aa_ 0&4

+ 205 1 H { a&ucm ol —ngcm’m}] (35)

C01 Co1 0 0 (1) aQC((JP
a T +iyo=— o, + Y1 aai—l-aaa Cor + Y2 on? + €

il @ v ’uy L 0 L By
a - + VY1 <a£2 + = E, C()l + V2 6n2 + V3 a£+a£_ + 1Yy 66‘3

3-(1)

1 1 2 _(2)*
! ] = 5,1V + 5ol + e [fncéi) cy)

—+ léﬁc%) C(n +1 67|C01 |2

d (2)
94

aTl

. 0
+ Y5 9L o

1 2 1 1 2)* 1 1)* (2 2 1
281105 PC5) + 8205 T ) + 82001 €y ) 4 8205 18k P

(1)* (1)*
(1)20Cpy )05

. ac(l)
6 1) 10
F0alor e oL

aC(l) .
)12 01 4 léﬁc((ﬁ) CEO a£+

+ i8¢V %

Fisd
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: 2 501 (1)
iy P +2c01{ ae (la'P) —Hgg (|c10|)}] (36)

where the Hilbert transform operator

]_ o0 o0 (El_a)ll)(£/7nla’r) / /
Hb(En. ) = 27TJ J_oo (&' — &)+ (n' —n)?]3/2 d&-dn

and Appendix B gives the coefficients y; and ;.

In equation (35), if we restrict to the nonlinear evolution of unidirectional
wave train propagating in the positive direction of x-axis, that is, if we set
(o1 = 0 and assume that (;¢ is independent of & _, then we recover the
fourth-order nonlinear evolution equation for a gravity waves in the presence
of wind flowing over water. This reduced equation is found to be same as
equation (34) of Dhar and Das [6] if we set ¢ = Cgé)—l—eég) and 2 = a_n+€a_12
in equation (34). This reduced equation for v = 0, y = 0 has also been
verified by us to be equivalent to equation (2) of Janssen [15].

As each of the left and right propagating waves sees the counter-propagating
wave only through its mean square amplitude, the nonlocal mean field equa-
tions suitable for stability analysis obtained from (35) and (36) is obtained
by applying the averaging procedure of Pierce and Knobloch [18]. Therefore,
following them we define the average of a function of two variables &, and & _
with respect to any one of these two variables by

1 P+/2
(e=o | haee. (37)
PiJopis2

where p and p_ are the periods of the function h with respect to &, and &_
respectively. If h is not periodic, then by (h)L we mean

ee]

(h)y = J h d&s (38)

—00

provided the above integral exists.
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Taking the average of equation (35) with respect to & over the period of ;o
we get the following fourth order nonlocal mean-field equation for (y:

TS ST e T} ST (i) 0/
a - + Y1 aéi + V2 on? +e |1 T, +1 o, + Y1 aaa_
62<C§§)> 57(1) 57(1)
. 0°Gy L 0°(yg (1)12(1) (1)2),(1)
TV g g | = Bl Fho F 8allor [

+e [6165%32 (") +2mlcld’ (cff) +oacly <cé?cé?*>

62CS)) <C(()i) C(()i)> 62 <C§?))|C((ﬁ)|2> 1E3|C10 |2 aglo E4C10 aglo
7 01 aE 8510 10 aE 10 ?

where

0 (1)* .0 (1)
Og 2155<C&)§%> +i66<(2((ﬁ) a%)i > < aa_(|C10| )> .

Similarly, taking the average of (36) with respect to &, over the period of (g
we get the following fourth order nonlocal mean-field evolution equation

for COl:
. aCéi) aQC((J?) E)ZC&) C01 i 0 >
T, TV TV T TV, T Yen <C01 N

G, | e
+1Y4
on?

.03
+1y;5 COI

92
Vi3 <Cﬂl> MRE Yl 9E_on?
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2 *
= 81100 Ly’ + 8alt) Py + € {fnciéﬁ (cd"), +asilce™(cd),

. . , oty
+ 50 (') + e (o) cé?} + 820N P+ gl P 5
+ + 0&

Y Lo e
i80S s () SR sadll) + 2 Mo (1F) |

(40)

where

Cio , 0G0\
6 <C10 a£+> ‘|‘166 <C10 a£+ X 2 a£+ <|C10|> +‘

In equations (39) and (40), if we put € =0, v =0 and y = 0, then we get
nonlocal mean field evolution equations in the third order (lowest order) for
infinite depth water. These reduced equations become the same as equations
(1b) of Pierce and Knobloch [18] for p = 0 and we proceed to the limit as
h— .

4 Stability analysis

Equations (39) and (40) admit the solution
Cio = C§8) = o exp (lAwT), (o= C(()(l)) = oy exp (1AwT), (41)
where &g is a real constant and the nonlinear frequency shift

To study modulational stability of these wave trains we introduce the pertur-
bations

Cio = C%) + GC%) = Cig) (14 Ry +€,S10) (43)
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Cot = Gy +€C5) = o1 (14 Roy + €, S01), (44)
where Rig = Rio (&4,M,T1,T2), Ror = Ro1 (E—,1,T1,T2) ,
SlO - Sl(] (Ev+7 £77n7T17T2) ) sOl = SOl (EJrv 6771’]7117,-(2) .

We insert (43) and (44) into (39) and (40) respectively, linearize, and finally
separate into real and imaginary parts to obtain the following equations in
the lowest order

oR,} 0%R} 0%R} . .
B 8’17110 ™ aé?io + Y2 anéo = 28,0 R] + 28,05R,)] (45)
o0R,; %R, 0%R,
=0 46
and in the next higher order,
o) R, PSS R OR

oz "egr  VaE on?
LR, OR, R,
= 25102(S]y)_ + 25,02(Sy])_ — 5302 w+m()1°+%%< m>

o1, ot, ' g2

0¢& 0& 0&_
oR,} 5 OR; oR,¢ OR, T
. 6 2 01 o 6 10 4 2H 10 4 2 H 01 4
6“0<aa_ >_ ™~ °aa+ BT °‘°< & >_’ )
OSib). R Sw). S R R

652 + VY2 on? Y4 a&i dE, o’
oR} oR: oR,}! oR}! oR:

_63 08510+64 Oaalo+65 0<aE,01>+66(x(2)<aE,01> 67 Oaalo

(48)

In the above four equations the superscripts r and 1 indicate real and imaginary
parts of the associated variables. In the transverse direction we consider the
following uniform perturbations

o IAE * —iNE i IAE % —iNE
Ri6 = P10 + T10e" " + 1€ * Rio = g0 + 10" + s70€ ™
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- e _ e e
Rot = Poi + Tore™ " + 15,67, Rob = qo1 + So1€™e + 85 e e

(STo)— = ewo + groe ™+ + gjpe ™5, (Sig) - = fio + hygeo + hjje e,
(So1)— = e + goe = + ggie M (S) - = for + hgr e+ hy e e

(49)
where p, q, 1, s, e, f, g and h are functions of Ty and 15 only.

Here we assume dependence on T; and T, to be of the form exp(—1Q;1)
and exp(—iQyTy) respectively. Now introducing perturbation relations (49)
in equations (45)—-(48) and equating coefficient of e"*&+ on both sides we get
from the lowest order equations (45) and (46)

('}/17\2 + 2610(8) Ti0 — iQ1310 =0 y (50)
104710 +¥1A%s10 = 0, (51)

and from equations (47) and (48) we get

(Yl}\2 + 2610(8) Jdio + 2520((2)901 — inhlo — 4|7\|CX(2)T10
—I{QQ +'}/47\3+}\R3 (53—64+67)}810 =0, (52)
in Jdio + '}/17\2]’110 + i {QQ -+ 'Y4)\3 + }\06(2) (63 + 54 + 67) } Ti0 = 0. (53)

The nontrivial solution of (50) and (51) is
QF =v1A% (y1A* + 28104 - (54)

Using the equations (51) and (54), we obtain the following equation from (52)
and (53)

[Ql{Q2 + V4N + Ao (83 + 87)} + 2y3 “(2)7\2|}\|] T10 =0
Since 119 # 0,

Q1 { Qs 4+ VA’ + Ao (83 + 87) } + 2y10gA* Al = 0. (55)
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From equations (54) and (55) we obtain the following nonlinear dispersion
relation for Q = Q4+ € Q5 :

Q= {y17\2(y17\2 + 26locg)}1/2 —€ {y4?\3 + Aok (83 + 67)}
— 2eyiN N0/ {yiN® (YiA? + 28,02) } 2. (56)

From relation (56), we observe that instability occurs when y18; < 0 for long
wavelengths; that is, for A — 0. When the instability condition is fulfilled,
the growth rate of instability

M= [—v1A* (viA* + 28103) ] vz 2ey1 A A [=v1A? (V1A + 28106) | 12
(57)
For A? = —§;02/v1, the maximum growth rate of the instability
2€d; 06
M = [8,]02 — =210 (58)

\Y4 Y164 '

At marginal stability y;A? + 28,02 = 0, and the wave number

A V2D (59)

Vs
In Figures 1 and 2 the maximum growth rate of instability I},, obtained
from equation (58), is plotted against wave steepness &g for some different
values of dimensionless wind velocity v. From the graphs, in the fourth order
analysis for waves with sufficiently small wave numbers the maximum growth
rate of instability I, first increases with the increase of wave steepness g,
and then it decreases with the increase of wave steepness o, and finally
vanishes at some critical value of wave steepness g beyond which there is no
instability; whereas in the third order analysis the maximum growth rate of
instability I, increases steadily with the increase of wave steepness o«g. The
growth rate is found to be appreciably higher for dimensionless wind velocity
approaching its critical value. Again the wave number A at marginal stability
which obtained from equation (59) is plotted in Figure 3 and Figure 4 against
wave steepness o for some different values of dimensionless wind velocity v.
These figures determine the stable and unstable regions in the (A, &g)-plane.
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5 Discussion and conclusion

The third order nonlinear evolution equations have been derived by Pierce
and Knobloch [18] for two counter-propagating capillary-gravity wave packets
on the surface of water of finite depth.

Here, the fourth order nonlinear evolution equations (35) and (36) are derived
for two counter-propagating surface gravity wave packets in deep water in
the presence of wind flowing over water. This is an extension of the evolution
equations derived by Pierce and Knobloch [18] for gravity waves to one order
higher for an infinite depth water and in the presence of wind flowing over it.
The reason for starting from a fourth order nonlinear evolution equation is
motivated by the fact, as shown by Dysthe [11], that a fourth order nonlinear
evolution equation is a good starting point for making stability analysis of
a uniform wave train in deep water. The evolution equations derived by us
have been used to investigate the stability of a uniform standing wave train
under longitudinal perturbations. An instability condition is obtained and
Figures 1 and 2 plot show the maximum growth rate of instability I, against
wave steepness o for some different values of dimensionless wind velocity v.
From the graphs it is found that in the fourth order analysis for waves with
sufficiently small wave numbers the maximum growth rate of instability 'y,
first increases with the increase of wave steepness g, and then it decreases
with the increase of wave steepness &, and finally vanishes at some critical
value of wave steepness g beyond which there is no instability; whereas in
the third order analysis the maximum growth rate of instability I, increases
steadily with the increase of wave steepness «g. The growth rate of instability
is found to be appreciably higher for dimensionless wind velocity approaching
its critical value. Our results show significant deviations from the results
obtained from third order nonlinear evolution equations. Figures 3 and 4
also plot the wave number A at marginal stability against wave steepness o
for some different values of dimensionless wind velocity v in which we have
obtained the stable and unstable regions in the (A, og)-plane.
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A Equations for d)l()) cb{()’ Cl()a (b()la d)(/)l and COl

The equations for ¢q9, ¢, and (o are obtained from equations (12)—(15)
and (22)—(24) by setting (m,n) = (1,0). Now the solutions of equations (12)
and (13) satisfying the boundary conditions (14) and (15) respectively put in
the form

b1o = exp (ZA10)A10, (60)
Cb{o = €xp (_ZAlo)A{o ) (61)

where Ajy and Aj, are functions of x;, y; and t;, and the operator

2
z
exp(zAlO) =1+ ZAl() + EA%O + - (62)

Substituting the solutions (60) and (61) for ¢19 and ¢, in (22) and (23)
respectively for (m,n) = (1,0) and then inverting these operators on Aiq
and A, in the linear part of the equations, we obtain

Ao = Ajg{aig — iw: G, (63)
Al = A {i{wr —vki)Gio — bio), (64)

_ o0 i@
where Wy = w + leg- and k; =1 leg

When contributions from nonlinear terms are dropped and only linear terms
in € are considered, (63) and (64) give

0C10 n ean

aXl atl ’ (65)

AlO =—i (UClO + ew
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0Cio . 0C10
ax1 atl .
Finally substituting (60), (61) in (24) for (m,n) = (1,0) and then eliminat-
ing Ayp and Aj, from the linear part by the use of (65) and (66) we get the
following equation for (g

Afp=1(w—v)Go —ew (66)

[w% +y(w —vky)? — (1 —V)Alo} Cio = —ilwiap—iy(w;—vki)big—Ajpcip -

(67)
Proceeding in the same way we get the following equations of ¢, df; and (o
for (m,n) = (1,0)

$o1 = explzAp Ao, (68)
$o1 = expl—zAnlAg, (69)
[w? 4+ v(wi —vk1)® — (1 —¥)Ap1] Con

= —iwag — ty(w; — vki)bor — Agicor - (70)

B Coefficients of the evolution equations (35)
and (36)

_ 2yvw —2yvi 4 (1 —)

Yo= (1+vy)w?2—yvw
_ 2yveg — (1+7) ¢ —yv?
Y= 2(1+v) w2 —2yvw '
(T =v) —2yvcy
Y2_4(1+y)w2—4va’
_2wcg—(1+y)cé+y(w2—vw)
Y8 = (1+7v)w?—yvw ’
y C W (4ck — 1)+ (1—y) —2yvw
y =

4w? 2w? (14 v) — 2wvw]?
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w? (4e2 —1) +9 (1 —v) + ywveg
6[2w?2 (1 +7v) — 2yvw]?
51 = [(2w" + 6w?) +v {2 (w? +v?) +2(2+p1) (w—V) (w0 —v—2w?)
— (14 2p1) w+ 15wv}+yv(w —v) (6p1 + 9)]
/ [12(»2 — 8w —v (w —V)Q] ;

Ys =

Y

62:31w4—23w2+s2(1—y)—|—8y(w—v)2—yv(8—wp2)
8wt — 6w? — 2y (w —v)? ’
_dw?el —24(1—v) +2yv(w+v+piw)
T {14y 2oy —3(1—y)P
5 :12(1—y)—(4w2c§—w2+8)—w(w+v)
T 20w (1Y) 2 -3 (-7
(4w?c? +1) — (1 —v) 4+ 3yv(w —v—pvw)
2wHw? (1 +v) +2yv? =3 (1 —v)}
(4w?c? —1) + 10 (1 4+v) +v (prw +v) + yvw (0 — V)

5 = ,
‘ 202 {4w? (1 +v) +2yv? — 3 (1 — )P

5 :94(4w2c§—w2)+24(1+y)+yv(p1w—v) (w—v)
' 42 {4w? (1 +7) +2yv? — 3 (1 —y)¥ ’
. _ 2yvw —2yvi 4+ (1 —)
S 2(1+y)w —2yv

B w? =3y (w—v)?

2w (y—1)—2yw(v+w)+3(1—v)’
_ 202 (1 +y) — 4yVv?

4w (14+y)+2yv(w—v) =31 —v)

)

65:

Y

Y

P1

P2
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