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Discrete mechanics and optimal control for
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Abstract

Diffeomorphic image registration, where images are aligned using
diffeomorphic warps, is a popular subject for research in medical image
analysis. We introduce a novel algorithm for computing diffeomorphic
warps that solves the Euler equations on the diffeomorphism group
explicitly, rather than using an optimiser. The result is an algorithm
that is many times faster than those considered previously.
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1 Introduction

Image registration has received much research over the past few years, not
least because of its many applications in medicine. For example, it is useful
for removing motion artefacts caused by patient movement [13], aligning to
an atlas [4], assisting in disease diagnosis [10], and for measuring anatomical
variability between subjects [14].

For applications in disease diagnosis and measuring anatomical variabil-
ity, some form of measurement on the space of images is essential, to allow
statistical analysis of the image warps. This generally requires using diffeo-
morphic image registration, whereby the choice of image warps that can be
used to solve the registration problem are constrained to be diffeomorphisms,
that is, smooth functions that have smooth inverses. One approach to this
problem, known as Computational Anatomy, is to introduce group actions as
deformable templates that are warped via the actions of a group onto other
images [5]. This work has been fundamental to a large amount of research
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on aligning images through landmark matching, where corresponding points
are defined on a set of images, and diffeomorphic warps used to align them.
The corresponding group for image analysis is the full diffeomorphism group,
not the volume preserving subgroup that is used in fluid mechanics.

Under a right-invariant Riemannian metric it can be shown that the
geodesics of the motion of a set of landmarks can be computed as an op-
timisation problem [11, 10]. In this article we introduce a novel formulation
for the problem that is based on implicitly solving the partial differential
equations that govern the motion. These partial differential equations are
the Euler equations for the full diffeomorphism group, given by equations (1)
and (2); for derivations, following Arnold [1], see [11, 7]. We introduce a par-
ticle method that enables us to solve for the diffeomorphism directly. This
results in an algorithm that is orders of magnitude faster than previous ones
(taking several minutes rather than an hour or two). We demonstrate the
algorithm using the standard forward-Euler and Runge–Kutta algorithms,
and discuss the benefits of using a symplectic integrator.

2 Problem formulation

We begin by defining the problem of diffeomorphic image registration:

Assume that there is a diffeomorphism φ that takes a free
image F to a reference image R, that is, R = F ◦ φ. The aim of
diffeomorphic image registration is to discover φ.

The diffeomorphism φ is defined on some domain Ω ⊂ R2 or R3, and the
images are typically grayscale, so that R,F : R2 → R or R,F : R3 → R. The
method used to find the desired φ is generally optimisation of some norm
‖R−F ◦φ‖. Typical choices include the L2 norm (sum-of-squares error) and
mutual information (which is related to the KL-divergence) [15].
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In this article we describe a novel method of constructing the diffeo-
morphisms. The standard approach in the literature is to use an energy
minimisation, which produces the diffeomorphism as a geodesic. There are
effectively three different approaches: (a) considering the problem as one
of inexact matching on the boundary values (the start and end points of
the landmarks) [8, 2]; (b) considering the problem as one of inexact match-
ing using the initial values of position and momentum [3]; (c) considering
the problem as one of exact matching [10]. The first approach optimises
the warp over the end points of the spline, which are not guaranteed to be
reached precisely; the second optimises the warp over the initial momenta
of the landmarks; whereas the third approach can consider either method
equally.

For the case of the full diffeomorphism group, G = Diff(Rn), which we
consider here, the Euler equations are [6, 12, for details]:

ṁ+ u · ∇m+∇uT ·m+m(divu) = 0 , (1)

m = Au , (2)

where ṁ denotes differentiation with respect to time, u(x, t) (u, x ∈ Rn,
t ∈ R) is a velocity field, m(x, t) its associated momentum, and A is an
elliptic operator (for example, A = (1 − ∇2)k) called the inertia operator.
The inverse of the inertia operator A is given by convolution with the Green’s
function G of A, that is, u = G ∗ m, where ∗ denotes convolution and
AG(x, x′) = δ(x − x′) for x, x′ ∈ Rn. We shall only consider rotationally
invariant and diagonal A; in this case G(x, x′) = G(‖x − x′‖) for a scalar
function G.

A striking feature of Euler equations on diffeomorphism groups is that
they admit (formally, at least) exact solutions in which the momentum is
concentrated at a finite set of points. For fluid equations these are point
vortices, which are widely studied both in their own right and as a means of
approximating the evolution of smooth or other vorticities. In analogy with
the point vortices of fluid dynamics, we call the particles used for the image
registration point particles.
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3 A particle method for image registration

We are considering the deformation of an image F , with the deformation
defined by a set of points i (some subset of the pixels of the image) with
position and momentum (qi(t), pi(t)), where pi = q̇i as they move from their
initial state (qi

0, p
i
0) to their endpoint at t = 1 . Starting from the Euler

equations on the diffeomorphism group (1) and (2) we first compute the
Hamiltonian, which is the kinetic energy, and then discretise it by introducing
the particle ansatz m(x, t) =

∑N
j=1 pj(t)δ(x− qj(t)), where δ(·) is Kronecker

delta function. The evolution of the particles is then determined by the
Hamiltonian

H =
1

2

∑
i,j

pi · pjG(qi − qj), (3)

where G(·) is the Green’s function corresponding to the chosen metric on
Diff(Ω). The most common choice in image registration, and the one that we
use in this article is the H∞ metric, which corresponds to using a Gaussian
Green’s function G(r) = (1/ε2) exp(−r2/ε2), where ε is the length-scale in
the metric. Other choices include the thin-plate spline and clamped-plate
spline [10, for a review].

Solutions to (1) of this particle form obey Hamilton’s equations for (3),
in which the components of qi and pi are canonically conjugate variables.
Here q1, . . . , qN represent the positions of the N particles that define the
deformation, and p1, . . . , pN their momenta. The equations of motion of the
point particles are

q̇i =
N∑

j=1

G(‖qi − qj‖)pj, , (4)

ṗi = −
∑

j

(pi · pj)G
′(‖qi − qj‖)

qi − qj
‖qi − qj‖

. (5)

Computing the diffeomorphism defined by qi and pi, i = 1, . . . , N , is then
simply a case of integrating the motion forward in time using (4) and (5),
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and then interpolating the motion of the rest of the image in some way.
Here, we use test particles, which have zero momentum and so follow the
flow—see Section 3.5. This leads us to the complete Algorithm 1 for image
registration. The references on each line of Algorithm 1 give the section
where it is discussed in more detail. Section 4 gives some examples of 2D
registrations using the algorithm.

Algorithm 1 Our image registration algorithm

• Choose point particle positions q on image F (§3.1)

• Initialise the particle momenta p randomly (§3.2)

• Optimise ‖R− F ◦ φ‖ over p (§3.3):

– For current p, integrate point particles forward in time (§3.4)

– Integrate positions of the test particles (§3.5)

– Interpolate between the test particles (§3.5)

– Compute ‖R− F ◦ φ‖ for chosen distance measure (§3.6)

• Add more point particles and reoptimise ‖R− F ◦ φ‖ (§3.7)

3.1 Position of point particles

There are several possible choices for placing the point particles [9]. For
registration of brains we initially place some points around the skull of head
images, and after optimising them, place more points using the discrepancy
image method (which is based on where there are still errors in the objective
function). For the hand images we use a uniform grid and the discrepancy
image method.
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3.2 Initialisation of point momenta

In the current implementation, the momenta of each point particle are ini-
tialised with a uniformly random direction, and with a small (10% of average
warp size) uniform random magnitude for the warp. The sensitivity of the
algorithm to the initialisation does not seem to be large, but one option that
does appear to improve the results, although at a moderate computational
cost, is to perform a coarse search over this relatively small number of pa-
rameters (two for each of the point particles, of which there may be 10–20
on the initial pass).

3.3 Optimisation method

The choice of a suitable optimiser is obviously crucial. In the current im-
plementation we use the sum-of-squares distance measure, which leads fairly
naturally to a least-squares non-linear optimiser. We currently use the lsqnonlin
function in Matlab 7.1, which is a subspace trust region method based on the
interior-reflective Newton method. Experimentation has found that 100 iter-
ations is usually sufficient for the algorithm to converge reasonably, although
further work will investigate this more thoroughly.

3.4 Choice of integrator

The principal component of our method is the computation of the current
geodesic, based on q and the current p. This is calculated by numerically
integrating the particle dynamics forward in time. The Hamiltonian ordinary
differential equations are discretised in time, and then integrated forward.
We choose a time step for the integration, and the method of numerical
integration. The standard choices would generally be Euler’s method, or a
second order improvement, such as second order Runge–Kutta.
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The factors that affect the computation of the diffeomorphism are the
number of point particles and test particles (see §3.5), the number of time
steps, and the order of the integrator (how errors accumulate during the in-
tegration). One improvement that can be considered is that the equations
of motion (4, 5) are Hamiltonian and their flow is therefore symplectic. In
long time simulations of Hamiltonian systems (such as celestial and molecu-
lar mechanics) it has been found extremely advantageous to use symplectic
integrators, which preserve the symplectic structure. This leads to good en-
ergy behaviour and a lack of dissipation. In fact, some implementations of
image registration by diffeomorphisms used symplectic integrators, because
calculating geodesics by minimising a discrete path length does give a sym-
plectic integrator [10]. However, the diffeomorphism itself, calculated from
the motion of the test particles, has never been done symplectically. Using
a symplectic integrator on this problem is work in progress, particularly as
it requires an implicit symplectic integrator. The computational costs look
promising, requiring only a constant time overhead, although the benefits of
the symplectic condition itself are less clear.

3.5 Test particles and interpolation

We can induce the value of the actual diffeomorphism φ(x) by the current
geodesic by placing particles with zero momentum (so q(0) = x , p(0) = 0)
at the centre point of each pixel in the image, and computing its trajectory
under the induced velocity field (that is, solving the ode q̇ = f(q, t)). These
are known as test particles.

Assuming that the deformation is not too large, we make some compu-
tational savings by placing a test particle every k pixels, and interpolat-
ing φ between the test particles. This saves a factor of k2 computations, but
changes the computed diffeomorphism from the exact one that relates to the
flow (indeed, it may actually stop the warp being diffeomorphic, although
this does not seem to be a problem in general). Using k = 4 and bi-linear
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interpolation has negligible effect on the accuracy in real registrations.

3.6 Choice of metric

Inherent in the choice of Green’s function G(r) is a choice of the metric
under which the particle dynamics occur. There is complete freedom of
choice over this metric. By far the most common choice to date for image
registration has been to use a Gaussian metric, that is, Green’s function
G(r) = (1/ε2) exp(−r2/ε2), where ε is the length scale in the metric. The
role of this length scale is important. Clearly, if it is set too small (say smaller
than the pixel spacing) then the kernels will not overlap, and the movement
of each particle will be entirely independent of the rest of the image. This
will require the number of point particles to tend to infinity to represent an
arbitrary diffeomorphism. One way around this problem is to use a function
such as the clamped-plate spline [10], which uses a bounded domain with
strict boundary conditions to avoid the problem of defining a length-scale;
effectively the length-scale is the size of the image. The metric used for the
clamped-plate spline is of the form ∇2k. In the results reported in section 4,
a value of ε = 1 was used, which is half the width of the image (which is
scaled into [−1, 1]2).

3.7 Adding more points

In our implementation we position new point particles for further levels of
optimisation using the discrepancy image. This uses the objective function
(here the sum-of-squares error) to find regions where the two images do not
match, and then placing new point particles there, initialising their momenta
to zero.
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Figure 1: The registration of the two hands. The reference image, together
with the positions of the particles and their momenta are shown on the left,
the final result is shown in the middle, and the effect of the warp on a grid
is shown on the right.

4 Experiments

We now present two different image registrations. The first is of a pair of
hand images, while the second are two 2D T1-weighted mr scans of the
human brain. The hand registration was initialised using 9 point particles,
positioned in a 3× 3 grid on the image. The optimiser ran for 40 iterations
before converging, and then an additional 7 points were added to the image
using the method described by Marsland and Twining [9], which adds points
where the error is currently large (the positions of the particles can be seen in
Figure 1, together with the positions of the points and the initial momenta on
the reference image, the final output, and the effect of the warp on a regular
grid). Another 37 iterations were then performed by the optimiser, with the
final result being that shown. Figure 2 provides a different way to interpret
the results, showing a chequer-board overlay of the two images before and
after the registration, as well as the change. See that even after this relatively
small amount of computation, the registration is very good. Computing this
registration took 251 seconds on a 1.8 GHz G5 Apple Macintosh, compared
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Figure 2: Chequer-board plots showing the difference between the initial
images of the hands (left), the final images (centre), and the change between
the initial and final versions of the free image (right).

to well over an hour for the optimisation version, with results being slightly
better (that is, the objective function was lower) for the particle method.

Figure 3 show a sample registration of two brains. A set of 10 points were
positioned evenly around the skull, and the result optimised for 20 iterations.
Following this, an additional set of 11 knot points, with 50 iterations of
optimisation then being performed. This registration took under 7 minutes
on the same computer, and it can be see that the final result is not bad.
There is still work to be done on the interior (and further optimisations do
indeed correct this), but the skull and major structures have all been brought
into alignment.

These results are generally much faster than using an optimisation method
for finding the diffeomorphism—the method described by Marsland and Twin-
ing [10] took just under two hours to perform the brain registration described
above. One of the main reasons is that those optimisation methods take many
more time steps to find the diffeomorphism, usually 20 time steps are used to
guarantee a diffeomorphism. With our current method, for relatively small
deformations, only one time step is needed.
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Figure 3: Chequer-board plots showing the different between the initial
images of the T1-weighted brains (left), the final images (centre), and the
change between the initial and final versions of the free image (right). The
registration has lined up the skulls and the major structures within the brain,
but there is still more fine-scale work to be done.

5 Conclusions and open questions

We have presented a method of performing diffeomorphic image registration
using the methods of discrete mechanics and optimal control. The imple-
mentation described performs high quality registrations in reasonably short
computational time—orders of magnitude less than using energy minimisa-
tion methods. It is still a matter for debate whether diffeomorphic methods
are suitable for general image registration. However, for applications where
it is variation that is of interest, for example in disease diagnosis or measure-
ment of anatomical variability, the access to a right invariant Riemannian
metric on the diffeomorphism group makes diffeomorphic registration meth-
ods essential.

There are a great many unanswered questions and areas for future re-
search. We are particularly interested in the dynamical behaviour of the
Euler equations on the diffeomorphism group, and how it relates to point
vortices in fluid dynamics, which act on the volume preserving subgroups.
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However, with regard to using the method for image registration, there
are also several areas for further work. Firstly, we are currently investigating
the use of the midpoint rule symplectic integrator, as discussed above, and a
second question that we highlighted earlier in the article is that of a suitable
choice of metric. In this article we used the Gaussian metric, which is equiv-
alent to Hk, k →∞ . These Hk metrics have the form (1−ε2∇2)k, which has
an inherent length-scale ε. The role of both the metric and the length-scale
need further investigation—there is no guarantee that the Gaussian and any
chosen length scale are the correct choices for any particular problem, and
some methods of comparing the results of using different metrics on a set of
different problems is needed.

Acknowledgments We are grateful to Jan Modersitzki for the use of the
hand images and to the Royal Society of New Zealand Marsden fund and
NZIMA for their financial support.

References
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