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equation
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Abstract

A Galilei invariant fractional advection diffusion equation with
initial-boundary conditions is considered. An implicit difference ap-
proximation for solving the Galilei invariant fractional advection dif-
fusion equation is presented. We introduce a new Fourier method
for analyzing the stability and convergence of the implicit difference
approximation. Finally, some numerical examples are given. The nu-
merical results are in good agreement with our theoretical analysis.
This method and supporting theoretical techniques can also be ex-
tended to a larger class of fractional integro-differential equations.
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1 Introduction

There has been increasing interest in the description of physical phenom-
ena exhibiting anomalous diffusion, that is, diffusion not accurately modeled
by the usual advection diffusion equation. An extension of the continu-
ous time random walk approach to anomalous diffusion leads to fractional
advection-dispersion equations (fade). These equations have been used to
describe transport in amorphous semiconductors, spread of contaminants in
underground water, relaxation in polymer systems, and tracer dynamics in
polymer networks (Sokolov et al. [7]).

We consider the numerical solution of the following initial/boundary value
problem of the Galilei invariant fade (gi-fade) (Metzler et al. [4])

∂W (x, t)

∂t
+ v

∂W (x, t)

∂x
= 0D

1−γ
t Kγ

∂2W (x, t)

∂x2
+ f(x, t) , (1)

0 < t ≤ T , 0 < x < L ,



1 Introduction C777

where 0 < γ < 1 , Kγ > 0 and v > 0 are constants, the function f(x, t) can
be used to represent sources and sinks, and 0D

1−γ
t V (x, t) is the Riemann–

Liouille fractional derivative of order 1− γ defined by Podlubny [6]

0D
1−γ
t V (x, t) =

1

Γ(γ)

∂

∂t

∫ t

0

V (x, η)

(t− η)1−γ dη . (2)

We impose on (1) the following initial and nonhomogeneous Dirichlet
boundary conditions:

W (x, 0) = ϕ(x) , 0 ≤ x ≤ L , (3)

W (0, t) = φ(t) , 0 < t ≤ T , (4)

W (L, t) = ψ(t) , 0 < t ≤ T. (5)

The fade has been recently treated by Liu et al. [2]. Yuste and Acedo [8]
proposed an explicit finite difference method and a new von Neumann-type
stability analysis for the fractional subdiffusion equation, that is, the gi-fade
without the advection term. However, they did not give the convergence
analysis and pointed out the difficulty of this task when implicit methods
are considered. Langlands and Henry [1] also investigated this problem and
proposed an implicit numerical scheme (L1 approximation), and discussed its
accuracy and stability. However, the global accuracy of the implicit numerical
scheme was not derived and it seems that the unconditional stability for all γ
in the range 0 < γ ≤ 1 has not been established. The main purpose of this
article is to address these issues for the gi-fade. We analyze the problem
via a Fourier method.

Section 2 proposes an implicit difference approximation (ida) for gi-fade.
The stability and convergence of the ida are discussed using Fourier analysis
in Sections 3 and 4, respectively. Finally, some numerical results will be given
to evaluate the accuracy of the method.
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2 An implicit difference approximation for

the GI-FADE

This section proposes an implicit difference approximation for solving the
gi-fade (1) with the initial and boundary conditions (3)–(5).

We take an equally spaced mesh of M points for the spatial domain
0 ≤ x ≤ L , and N constant time steps for the temporal domain. We
denote the spatial grid points and the temporal grid points by xj = jh ,
j = 0, 1, . . . ,M , tk = kτ , k = 0, 1, . . . , N , respectively, where the grid
spacing is simply h = L/M in the spatial domain and τ = T/N in the time
domain.

Meerschaert et al. [5] showed that using the usual Grünwald formula
to discretize the one dimensional fractional diffusion equation results in an
unstable finite difference scheme. Thus, we start here with a right-shifted
Grünwald approximation to the fractional derivative, which for 0 < γ ≤ 1 is

0D
1−γ
t V (x, t) = τ γ−1

[t/τ ]∑
l=0

w1−γ
l V (x, t− lτ) +O(τ p). (6)

This formula is not unique because there are many different valid choices
for w1−γ

l that lead to approximations of different order p (Ch. Lubich [3]).

We now present the following ida for the initial/boundary value problem
of the gi-fade (1)–(5):

W k
j −W k−1

j

τ
+ v

W k
j+1 −W k

j−1

2h

= τ γ−1Kγ

k∑
m=0

w1−γ
m

W k−m
j−1 − 2W k−m

j +W k−m
j+1

h2
+ fkj , (7)

j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N ,
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W k
0 = φ(tk) , W k

M = ψ(tk) , k = 1, 2, . . . , N , (8)

W 0
j = ϕ(xj) , j = 0, 1, . . . ,M , (9)

where w1−γ
m = (−1)m

(
1− γ
m

)
, m = 0, 1, . . . , k ,

and fkj ≡ f(xj, tk) . We take p = 1 . These coefficients can be evaluated as
follows (Yuste et al. [8])

wα0 = 1 , wαm = (−1)m
α(α− 1) · · · (α−m+ 1)

m!
, m = 1, 2, . . . . (10)

3 Stability of the IDA for the GI-FADE

This section analyzes the stability of the ida using Fourier analysis. Firstly,
we rewrite (7) as

W k
j = W k−1

j + µ2

k∑
m=0

w1−γ
m

(
W k−m
j−1 − 2W k−m

j +W k−m
j+1

)
(11)

− µ1

W k
j+1 −W k

j−1

2
+ τfkj , j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N ,

where µ1 = vτ/h and µ2 = Kγτ
γ/h2 . The roundoff error ρkj of the solution

for the ida (7)–(9) satisfy the difference equation

ρkj = ρk−1
j − µ1

ρkj+1 − ρkj−1

2
+ µ2

k∑
m=0

w1−γ
m

(
ρk−mj−1 − 2ρk−mj + ρk−mj+1

)
, (12)

j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N .

We now define the grid functions:

ρk(x) =

{
ρkj , when xj − h

2
< x ≤ xj + h

2
, j = 1, 2, . . . ,M − 1 ,

0 , when 0 ≤ x ≤ h
2

or L− h
2
< x ≤ L ,



3 Stability of the IDA for the GI-FADE C780

and note that ρk(x) extended in a Fourier series as

ρk(x) =
∞∑

l=−∞

dk(l)e
i2πlx/L , k = 1, 2, . . . , N ,

where dk(l) = 1
L

∫ L
0
ρk(x)e−i2πlx/L dx , i =

√
−1 . We let

ρk =
[
ρk1, ρ

k
2, . . . , ρ

k
M−1

]T
and introduce the following norm:

‖ρk‖2 =

(
M−1∑
j=1

h|ρkj |2
)1/2

=

[∫ L

0

|ρk(x)|2dx
]1/2

.

Based on the Parseval equality:∫ L

0

|ρk(x)|2dx =
∞∑

l=−∞

|dk(l)|2 ,

we have

‖ρk‖2
2 =

∞∑
l=−∞

|dk(l)|2 . (13)

We now assume that the solution of equation (12) has the following form:

ρkj = dke
iσjh , (14)

where σ = 2πl/L . Substituting the above expression into (12), we obtain

dk = dk−1 − iµ1 sin(σh)dk − 4µ2 sin2 σh

2

k∑
m=0

w1−γ
m dk−m , k = 1, 2, . . . , N .

(15)
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Lemma 1 The coefficients w1−γ
m (m = 0, 1, . . .) satisfy

1. w1−γ
0 = 1 ; w1−γ

1 = γ − 1 ; w1−γ
m < 0 , m = 1, 2, . . . ;

2.
∑∞

m=0w
1−γ
m = 1 ; for all n ∈ N , −

∑n
m=1 w

1−γ
m < 1 .

Zhuang et al. [9] gave the proof.

Applying Lemma 1, equation (15) is rewritten as

dk =
1 + (1− γ)µ̄

1 + µ̄+ iµ̃
dk−1−

µ̄

1 + µ̄+ iµ̃

∞∑
m=2

w1−γ
m dk−m , k = 1, 2, . . . , N , (16)

where µ̄ = 4µ2 sin2 σh
2
≥ 0 and µ̃ = µ1 sinσh .

Lemma 2 Assuming that dk (k = 1, 2 . . . , N) is the solution of equation (16),
then

|dk| ≤ |d0| , k = 1, 2, . . . , N . (17)

Proof: Mathematical induction proves this result. ♠

Theorem 3 The ida (7)–(9) for the gi-fade (1)–(5) is unconditionally sta-
ble.

Proof: Apply Lemma 2 and noting (13), we have

‖ρk‖2 ≤ ‖ρ0‖2 , k = 1, 2, . . . , N, (18)

which implies that the ida (7)–(9) for the gi-fade (1)–(5) is unconditionally
stable. ♠
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4 Convergence of the IDA for the GI-FADE

This section discusses the convergence of the ida. Let

Rk
j =

W (xj, tk)−W (xj, tk−1)

τ
+ v

W (xj+1, tk)−W (xj−1, tk)

2h
(19)

− τ γ−1Kγ

k∑
m=0

w1−γ
m

W (xj−1, tk−m)− 2W (xj, tk−m) +W (xj+1, tk−m)

h2

− f(xj, tk) , j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N.

The following lemma holds.

Lemma 4 τ γ−1
∑k

m=0w
1−γ
m = 1

Γ(γ)
+O(τ) .

Applying the Taylor expansions, (6) and Lemma 4, we obtain

|Rk
j | ≤ C1(τ + h2) , j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N , (20)

where C1 is a positive constant. From (19), we have

W (xj, tk) = W (xj, tk−1)− µ1
W (xj+1, tk)−W (xj−1, tk)

2
(21)

+ µ2

k∑
m=0

w1−γ
m [W (xj−1, tk−m)− 2W (xj, tk−m) +W (xj+1, tk−m)]

+ τf(xj, tk) + τRk
j , j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N .

Subtracting (11) from (21), we obtain

ekj = ek−1
j − µ1

ekj+1 − ekj−1

2
+ µ2

k∑
m=0

w1−γ
m

(
ek−mj−1 − 2ek−mj + ek−mj+1

)
(22)

+ τRk
j , j = 1, 2, . . . ,M − 1 , k = 1, 2, . . . , N ,
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where ekj = W (xj, tk)−W k
j , j = 0, 1, . . . ,M , k = 0, 1, . . . , N .

We now analyze the convergence of the ida by using Fourier analysis. We
define the grid functions for k = 0, 1, . . . , N as

ek(x) =

{
ekj , when xj − h

2
< x ≤ xj + h

2
, j = 1, 2, . . . ,M − 1 ,

0 , when 0 ≤ x ≤ h
2

or L− h
2
< x ≤ L ,

(23)

and

Rk(x) =

{
Rk
j , when xj − h

2
< x ≤ xj + h

2
, j = 1, 2, . . . ,M − 1,

0 , when 0 ≤ x ≤ h
2

or L− h
2
< x ≤ L ,

(24)

respectively. Thus, ek(x) and Rk(x) have extended Fourier series expansions

ek(x) =
∞∑

l=−∞

ξk(l)e
i2πlx/L , k = 0, 1, . . . , N (25)

and

Rk(x) =
∞∑

l=−∞

ηk(l)e
i2πlx/L , k = 1, 2, . . . , N , (26)

respectively, where

ξk(l) =
1

L

∫ L

0

ek(x)e−i2πlx/L dx , ηk(l) =
1

L

∫ L

0

Rk(x)e−i2πlx/L dx . (27)

We now let

ek =
[
ek1, e

k
2, . . . , e

k
M−1

]T
, k = 0, 1, . . . , N (28)

and
Rk =

[
Rk

1 , R
k
2 , . . . , R

k
M−1

]T
, (29)

and introduce the following norms:

‖ek‖2 =

(
M−1∑
j=1

h|ekj |2
)1/2

=

[∫ L

0

|ek(x)|2 dx
]1/2

, k = 0, 1, . . . , N (30)
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and

‖Rk‖2 =

(
M−1∑
j=1

h|Rk
j |2
)1/2

=

[∫ L

0

|Rk(x)|2 dx
]1/2

, k = 1, 2, . . . , N , (31)

respectively. Using Parseval’s equality:∫ L

0

|ek(x)|2dx =
∞∑

l=−∞

|ξk(l)|2 , k = 0, 1, . . . , N , (32)

∫ L

0

|Rk(x)|2dx =
∞∑

l=−∞

|ηk(l)|2 , k = 1, 2, . . . , N , (33)

‖ek‖2
2 =

∞∑
l=−∞

|ξk(l)|2 , k = 0, 1, . . . , N , (34)

‖Rk‖2
2 =

∞∑
l=−∞

|ηk(l)|2 , k = 1, 2, . . . , N , (35)

respectively. From the above analysis, we now suppose that

ekj = ξke
iσjh (36)

and
Rk
j = ηke

iσjh , (37)

where σ = 2πl/L . Substituting (36) and (37) into (22), we obtain

ξk = ξk−1 − iµ1 sinσh · ξk − 4µ2 sin2 σh

2

k∑
m=0

w1−γ
m ξk−m + τηk , (38)

k = 1, 2, . . . , N .

Applying Lemma 1, rewrite equation (38) as

ξk =
1 + (1− r)µ̄
1 + µ̄+ iµ̃

ξk−1 −
µ̄

1 + µ̄+ iµ̃

k∑
m=2

w1−γ
m ξk−m (39)
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+
1

1 + µ̄+ iµ̃
τηk , k = 1, 2, . . . , N ,

where µ̄ = 4µ2 sin2(σh/2) ≥ 0 and µ̃ = µ1 sinσh .

Similar to the proof of Lemma 2, we also obtain the following lemma.

Lemma 5 Supposing that ξk (k = 1, 2 . . . , N) is the solution of equation (39),
then there is a positive constant C2 such that

|ξk| ≤ C2kτ |η1| , k = 1, 2, . . . , N. (40)

Theorem 6 The ida (7)–(9) for the gi-fade (1)–(5) is convergent, and the
convergence order is O(τ + h2).

Proof: Noting (34) and (35), and applying Lemma 5, we obtain the result

‖ek‖2 ≤ C2kτ‖R1‖2 ≤ C1C2kτ
√
L
(
τ + h2

)
. (41)

As kτ ≤ T ,
‖ek‖2 ≤ C

(
τ + h2

)
, (42)

where C = C1C2T
√
L . The result then follows. ♠

5 Numerical results

This section gives a numerical example that confirms our theoretical analysis.
We consider the initial-boundary value problem of the gi-fade with a non-
homogeneous source term:

∂W (x, t)

∂t
+
∂W (x, t)

∂x
= 0D

1−γ
t

∂2W (x, t)

∂x2
(43)
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Table 1: The maximum error E∞.

τ h γ = 0.4 γ = 0.5 γ = 0.6
1
64

1
8

9.7E-04 1.3E-03 1.6E-03
1

1024
1
32

1.4E-04 9.0E-05 1.9E-04

+ ex
[
(1 + γ)tγ + t1+γ − Γ(2 + γ)

Γ(1 + 2γ)
t2γ
]
, 0 < t ≤ 1 , 0 < x < 1 ,

W (0, t) = t1+γ , W (1, t) = et1+γ , 0 < t ≤ 1 , (44)

W (x, 0) = 0 , 0 ≤ x ≤ 1 . (45)

The exact solution of the problem (43)–(45) is

W (x, t) = ext1+γ . (46)

The maximum error of the exact and numerical solutions is defined as

E∞ = max
0≤j≤M

max
0≤k≤N

|W (xj, tk)−W k
j | . (47)

Table 1 shows the maximum error at all mesh points for different γ using
τ = 1

64
, h = 1

8
and τ = 1

1024
, h = 1

32
respectively, and the effect of τ and h.

Physical conditions impose the range 0 < γ < 1 . In this example we select
three typical values γ = 0.4 , 0.5 and 0.6 in this range. Our analysis indicates
a convergence order of O(τ +h2) for small τ and h2 for the ida scheme. The
small values τ = 1/64 , 1/1024 and h = 1/8 , 1/32 have been used in this
example.

Table 1 indeed indicates that the maximum error is O(τ + h2) and ida is
unconditionally stable. These numerical results are in good agreement with
our theoretical analysis.
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6 Conclusions

Numerical treatment of fractional subdiffusion equations is known to be dif-
ficult. We consider the Galilei invariant fractional advection diffusion equa-
tion which covers fractional subdiffusion as a special case. We developed an
implicit difference approximation for solving the gi-fade. We introduced
a Fourier method to successfully analyze the stability and convergence of
the ida. We proved that the ida is unconditionally stable and convergent.
This method and supporting theoretical techniques can also be extended to
a larger class of fractional integro-differential equations.
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