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Abstract

We consider a space-time fractional Fokker–Planck equation on a
finite domain. The space-time fractional Fokker–Plank equation is
obtained from the general Fokker–Planck equation by replacing the
first order time derivative by the Caputo fractional derivative, the
second order space derivative by the left and right Riemann–Liouville
fractional derivatives. We propose a computationally effective implicit
numerical method to solve this equation. Stability and convergence
of the numerical method are discussed. We prove that the implicit
numerical method is unconditionally stable, and convergent. The error
estimate is also given. Numerical result is in good agreement with
theoretical analysis.
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for this article, c© Austral. Mathematical Soc. 2007. Published December 31, 2007. ISSN
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1 Introduction

There is growing interest in the field of fractional calculus. Oldham and
Spanier [11], Miller and Ross [10], Samko [14] and Podlubny [12] provide
the history and a comprehensive treatment of this subject. Many phenom-
ena in engineering, physics, chemistry and other sciences can be described
very successfully by models using the theory of derivatives and integrals of
fractional order. Differential equations with fractional order have recently
proved to be valuable tools for the modelling of many physical phenomena
[12]. A Fokker–Plank equation (fpe) has commonly been used to describe
the Brownian motion of a particles [13]. An fpe describes the change of
probability of a random function in space and time. The general fpe for the
motion of a concentration field u(x, t) has the form

∂u

∂t
= −ν(x)

∂u

∂x
+D(x)

∂2u

∂x2
. (1)
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Owing to its appearance in a wide diversity of complex systems, the phe-
nomenon of anomalous diffusion has received considerable attention in the
past two decades. In particular, since the general fpe cannot describe the
anomalous diffusion, several elaborate theoretical frameworks have been pro-
posed in recent years in order to overcome this difficulty. A straightforward
extension of the continuous time random walk (ctrw) model leads to a frac-
tional Fokker–Planck Equation (ffpe). It has been demonstrated that the
fpe can be generalized into a fractional fpe. ffpe was introduced with the
help of a phenomenological and interesting transformation of the classical
Fick law into a fractional Fick law. Metzler et al. [9] generalize the fpe and
introduce the following time ffpe:

∂u

∂t
= 0D

1−γ
t

[
−ν(x)

∂u

∂x
+D(x)

∂2u

∂x2

]
, (2)

where 0D
1−γ
t v(x, t) is the Riemann–Liouville fractional partial derivative of

order 1− γ .

One cannot expect to obtain a unique expression for the ffpe, since there
is not a unique generalization of the differentiation to a fractional order [15].

We consider the following space-time ffpe (stffpe):

∂αu

∂tα
= −ν(x, t)

∂u

∂x
+ c+(x, t)Dγ

a+u+ c−(x, t)Dγ
b−u+ f(x, t), (3)

where 0 < t ≤ T , a < x < b , and the initial and boundary conditions

u(x, 0) = ψ(x), (4)

u(a, t) = ϕ1 = 0 , u(b, t) = ϕ2 = 0 , (5)

where u is solute concentration, ν(x, t) > 0 and c+(x, t) > 0 , c−(x, t) > 0 rep-
resent the average fluid velocity and the dispersion coefficient, and assume
that this stffpe has a unique and sufficiently smooth solution under the
above initial and boundary conditions (some results on existence and unique-
ness are developed by Ervin and Roop [2]). The time fractional derivative
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∂αu/∂tα is the Caputo fractional derivative of order α (0 < α ≤ 1) defined
by [12]

∂αu(x, t)

∂tα
=

{
1

Γ(1−α)

∫ t
0
∂u(x,η)
∂η

dη
(t−η)α

, 0 < α < 1 ,

∂u(x,t)
∂t

, α = 1 ,
(6)

while the space fractional derivatives Dγ
a+u(x, t) and Dγ

b−u(x, t) are the left
and right Riemman–Liouville fractional derivatives of order γ (1 < γ ≤ 2)
respectively, defined by [12]

Dγ
a+u(x, t) =

{
1

Γ(2−γ)
∂2

∂x2

∫ x
a

u(ξ,t) dξ
(x−ξ)γ−1 , 1 < γ < 2 ,

∂2u(x,t)
∂x2 , γ = 2 ,

(7)

Dγ
b−u(x, t) =

{
1

Γ(2−γ)
∂2

∂x2

∫ b
x

u(ξ,t) dξ
(ξ−x)γ−1 , 1 < γ < 2 ,

∂2u(x,t)
∂x2 , γ = 2 .

(8)

Physical considerations restrict 0 < α ≤ 1 , 1 < γ ≤ 2 , and with the ad-
ditional restriction that u(a, t) = u(b, t) = 0 . In physical applications, this
means that no tracer leaks past the left and right boundaries. The func-
tion f(x, t) is used to represent sources and sinks. In the case of α = 1 and
γ = 2 , the above equation reduces to the classical Fokker–Planck equation
or advection-dispersion equation (ade). When c+ = c− = −0.5 cos(πγ/2),
the stffpe is written as

∂αu

∂tα
= −ν(x, t)

∂u

∂x
− (−∆)γ/2u+ f(x, t), (9)

where −(−∆)γ/2 = −(−∂2/∂x2)γ/2 is the Riesz fractional derivative, which
is a symmetric fractional generalization of the second order derivative.

The ffpe has been recently treated by a lot of people. It is presented as a
useful approach for the description of transport dynamics in complex systems
which are governed by anomalous diffusion and non-exponential relaxation
patterns [9]. Benson et al. [1] considered space ffpe, where c+ = (1/2+β/2)
and c+ = (1/2 − β/2), (−1 ≤ β ≤ 1). They gave analytic solution in
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terms of the α-stable error function. Liu et al. [4] considered the time ffpe
and the solution was obtained by using variable transformation, Mellin and
Laplace transforms, and H-functions. Huang and Liu [3] also considered the
space-time ffpe and the fundamental solution was obtained by applying the
Fourier–Laplace transforms. Meerschaert et al. [8] developed finite difference
approximations for the space ffpe. Liu et al. [5, 6] transformed the space
ffpe into a system of ordinary differential equations (Method of Lines),
which was then solved using backward differentiation formulas. Yu et al. [16]
developed a reliable algorithm of the a domain decomposition method to solve
the linear and nonlinear space-time fractional reaction-diffusion equations in
the form of a rapidly convergent series with easily computable components.
They did not give its theoretical analysis. Liu et al. [7] proposed an ap-
proximation of the Lévy–Feller advection-dispersion process by random walk
and finite difference method. However, numerical methods and analysis of
stability and convergence for fractional partial differential equation are quite
limited and difficult, and published papers on the numerical solution of the
stffpe are sparse. This motivates us to consider effective numerical methods
for the stffpe.

Section 2 proposes an implicit numerical method (inm) for the stffpe.
The stability and convergence of the stffpe are discussed in Sections 3
and 4, respectively. Finally, some numerical examples are given in Section 5.
Theoretical results are in excellent agreement with numerical testing.

2 An implicit numerical method

Define tk = kτ , k = 0, 1, 2, . . . , n , xi = a + ih , i = 0, 1, 2, . . . ,m , where
τ = T/n and h = (b− a)/m are time and space steps, respectively.

Let uki be the numerical approximation to u(xi, tk). Similarly, define
νki = ν(xi, tk), c

k
+,i = c+(xi, tk), c

k
−,i = c−(xi, tk) and fki = f(xi, tk).
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Setting ∆tu(xi, tk) = u(xi, tk+1)− u(xi, tk), then

∂αu(xi, tk+1)

∂tα
=

1

Γ(1− α)

k∑
j=0

∫ tk−j+1

tk−j

u′η(xi, η)

(tk+1 − η)α
dη

=
τ−1

Γ(1− α)

k∑
j=0

∆tu(xi, tk−j)

∫ tk−j+1

tk−j

dη

(tk+1 − η)α
+O(τ)

=
τ−α

Γ(2− α)

k∑
j=0

bα,j4tu(xi, tk−j) +O(τ) (10)

where bα,j = (j + 1)1−α − j1−α , j = 0, 1, 2, . . . , n . For space fractional
derivatives Dγ

a+u(xi, tk+1) and Dγ
b−u(xi, tk+1), we adopted the shift Grünwald

formula at level tk+1 [8]:

Dγ
a+u(xi, tk+1) =

1

hγ

i∑
j=0

gγ,ju(xi−j+1, tk+1) +O(h), (11)

Dγ
b−u(xi, tk+1) =

1

hγ

m−i+1∑
j=0

gγ,ju(xi+j−1, tk+1) +O(h), (12)

where gγ,0 = 1 , gγ,j = (−1)j
γ(γ − 1) · · · (γ − j + 1)

j!
, j = 1, 2, . . . .

Using the upwind difference scheme for ∂u/∂x, we have

k∑
j=0

bα,j4tu(xi, tk−j) = −µk+1
i [u(xi, tk+1)− u(xi−1, tk+1)]

+ r
(1)
i,k+1

i+1∑
l=0

gγ,lu(xi+1−l, tk+1)

+ r
(2)
i,k+1

m−i+1∑
l=0

gγ,lu(xi−1+l, tk+1)
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+ ταΓ(2− α)fk+1
i +Rk+1

i , (13)

where µki = νki τ
αΓ(2 − α)h−1 , r

(1)
i,k = ck+,iτ

αΓ(2 − α)h−γ , r
(2)
i,k = ck−,iτ

αΓ(2 −
α)h−γ and

|Rk
i | ≤ Cτα(τ + h), i = 1, 2, . . . ,m− 1 , k = 1, 2, . . . , n . (14)

From (13), we obtain the following implicit difference scheme:

k∑
j=0

bα,j4tu
k−j
i = −µk+1

i (uk+1
i − uk+1

i−1 ) + r
(1)
i,k+1

i+1∑
l=0

gγ,lu
k+1
i+1−l

+ r
(2)
i,k+1

m−i+1∑
l=0

gγ,lu
k+1
i−1+l + ταΓ(2− α)fk+1

i , (15)

where 0 < i < m , 0 ≤ k < n . Hence, we have

uk+1
i = bα,ku

0
i +

k−1∑
j=0

(bα,j − bα,j+1)uk−ji − µk+1
i (uk+1

i − uk+1
i−1 )

+ r
(1)
i,k+1

i+1∑
l=0

gγ,lu
k+1
i+1−l + r

(2)
i,k+1

m−i+1∑
l=0

gγ,lu
k+1
i−1+l + ταΓ(2− α)fk+1

i (16)

with the boundary and initial conditions

u0
i = ψ(ih), uk0 = 0 , ukm = 0 , (17)

where k = 0, 1, 2, . . . , n , i = 0, 1, 2, . . . ,m .

When α = 1 , µki = νki τh
−1 , r

(1)
i,k = ck+,iτh

−γ , r
(2)
i,k = ck−,iτh

−γ , the equa-
tion (16) is rewritten as

uk+1
i = uki − µk+1

i (uk+1
i − uk+1

i−1 )

+ r
(1)
i,k+1

i+1∑
l=0

gγ,lu
k+1
i+1−l + r

(2)
i,k+1

m−i+1∑
l=0

gγ,lu
k+1
i−1+l + τfk+1

i . (18)
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Lemma 1 The coefficients bα,j , gγ,j , j = 0, 1, 2, . . . , satisfy

1. bα,0 = 1 , bα,j > 0 , j = 1, 2, . . . ;

2. bα,j > bα,j+1 , j = 0, 1, . . . ;

3. gγ,0 = 1 , gγ,1 = −γ < 0 and gγ,j > 0 , j = 2, 3, . . . ;

4. gγ,0 + gγ,1 + gγ,2 + · · · = 0 , and for i = 1, 2, . . . , we have gγ,0 + gγ,1 +
· · ·+ gγ,i < 0 .

When 0 < α < 1 , from

lim
k→∞

b−1
α,k

kα
= lim

k→∞

k−1

(1 + 1
k
)1−α − 1

=
1

1− α
,

we obtain the following lemma.

Lemma 2 If 0 < α < 1 , there is a positive constant C such that

b−1
α,k ≤ Ckα , k = 0, 1, 2, . . . . (19)

3 Stability of the implicit numerical method

This section discusses the stability of the inm. We rewrite (16) as

uk+1
i + µk+1

i (uk+1
i − uk+1

i−1 )− r(1)
i,k+1

i+1∑
l=0

gγ,lu
k+1
i+1−l − r

(2)
i,k+1

m−i+1∑
l=0

gγ,lu
k+1
i−1+l

= bα,ku
0
i +

k−1∑
j=0

(bα,j − bα,j+1)uk−ji + ταΓ(2− α)fk+1
i . (20)
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Suppose that

‖uk+1‖∞ = max
1≤i≤m−1

|uk+1
i | , ‖f‖∞ = max

0≤i≤m, 0≤k≤n
|fki | ,

then we can obtain the following theorem.

Theorem 3 Suppose that uki , i = 1, 2, . . . ,m − 1 , k = 1, 2, . . . , n , is the
solution of (16), then

‖uk‖∞ ≤ ‖u0‖∞ + C‖f‖∞ , k = 1, 2, . . . , n . (21)

Proof: For 0 < α < 1 , we can obtain

‖uk‖∞ ≤ ‖u0‖∞ + C1k
ατα‖f‖∞ , k = 1, 2, . . . , n .

Assume that |u1
i0
| = max{|u1

i |, |u2
i |, . . . , |um−1

i |}, using
∑i0+1

l=0 gγ,l < 0 and∑m−i0+1
l=0 gγ,l < 0 , we have

|u1
i0
| ≤ (1 + µk+1

i0
)|u1

i0
| − µk+1

i0
|u1
i0−1|

−r(1)
i0,k+1

∑i0+1
l=0 gγ,l|u1

i0−l+1| − r
(2)
i0,k+1

∑m−i0+1
l=0 gγ,l|u1

i0+l−1|
≤ |u1

i0
+ µk+1

i0
u1
i0
− µk+1

i0
u1
i0−1

−r(1)
i0,k+1

∑i0+1
l=0 gγ,lu

1
i0−l+1 − r

(2)
i0,k+1

∑m−i0+1
l=0 gγ,lu

1
i0+l−1|

= |u0
i0

+ ταΓ(2− α)f 1
i0
|.

Thus, ‖u1‖∞ ≤ ‖u0‖∞+b−1
α,0τ

αΓ(2−α)‖f‖∞ . Suppose that ‖uj‖∞ ≤ ‖u0‖∞+

b−1
α,j−1τ

αΓ(2− α)‖f‖∞ , j = 1, 2, . . . , k . Using b−1
α,j ≤ b−1

α,k , j = 0, 1, . . . , k − 1 ,
we have

‖uj‖∞ ≤ ‖u0‖∞ + b−1
α,kτ

αΓ(2− α)‖f‖∞ , j = 1, 2, . . . , k . (22)

Similarly, let |uk+1
i0
| = max{|uk+1

1 |, |uk+1
2 |, . . . , |uk+1

m−1|}, we also have

|uk+1
i0
| ≤ (1 + µk+1

i0
)|uk+1

i0
| − r1|uk+1

i0−1|
−r(1)

i0,k+1

∑i0+1
l=0 gγ,l|uk+1

i0−l+1| − r
(2)
i0,k+1

∑m−i0+1
l=0 gγ,l|uk+1

i0+l−1|
≤ |uk+1

i0
+ µk+1

i0
uk+1
i0
− µk+1

i0
uk+1
i0−1

−r(1)
i0,k+1

∑i0+1
l=0 gγ,lu

k+1
i0−l+1 − r

(2)
i0,k+1

∑m−i0+1
l=0 gγ,lu

k+1
i0+l−1|.
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Therefore,

|uk+1
i0
| ≤ |bα,ku0

i0
+

k−1∑
j=0

(bα,j − bα,j+1)uk−ji0
+ ταΓ(2− α)fk+1

i0
|.

Using (22), we have

‖uk+1‖∞ ≤ bα,k‖u0‖∞ +
∑k−1

j=0(bα,j − bα,j+1)‖uk−j‖∞ + ταΓ(2− α)‖f‖∞
≤ bα,k‖u0‖∞ +

∑k−1
j=0(bα,j − bα,j+1)‖u0‖∞

+ b−1
α,k[
∑k−1

j=0(bα,j − bα,j+1) + bα,k]τ
αΓ(2− α)‖f‖∞

≤ ‖u0‖∞ + b−1
α,kτ

αΓ(2− α)‖f‖∞.
(23)

For α = 1 , similarly, we obtain ‖uk+1‖∞ ≤ ‖uk‖∞ + τ‖f‖∞ . Using mathe-
matical induction, we have ‖uk‖∞ ≤ ‖u0‖∞ + kτ‖f‖∞ , k = 1, 2, . . . , n .

From (19) and kτ ≤ T , the theorem is obtained. ♠

We suppose that ũki , (0 ≤ i ≤ m , 0 ≤ j ≤ n) is the approximate solution
of (16) and (17), the error εki = ũki − uki , (0 ≤ i ≤ m , 0 ≤ k ≤ n) satisfies

εk+1
i = bα,kε

0
i +

k−1∑
j=0

(bα,j − bα,j+1)εk−ji − µk+1
i (εk+1

i − εk+1
i−1 )

+ r
(1)
i,k+1

i+1∑
l=0

gγ,lε
k+1
i+1−l + r

(2)
i,k+1

m−i+1∑
l=0

gγ,lε
k+1
i−1+l . (24)

Applying Theorem 3, we obtain ‖Ek‖∞ ≤ ‖E0‖∞ , k = 1, 2, . . . , n , where
‖Ek‖∞ = max{|εk1|, |εk2|, . . . , |εkm−1|}. Thus, the following theorem is valid.

Theorem 4 The fractional implicit difference approximations defined by (16)
and (17) are unconditionally stable.
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4 Convergence of the implicit numerical

method

Let u(xi, tk), (i = 1, 2, . . . ,m − 1 , k = 1, 2, . . . , n) be the exact solution
of the equations (3)–(5) at mesh point (xi, tk). Define ηki = u(xi, tk) − uki ,
i = 1, 2, . . . ,m− 1 , k = 1, 2, . . . , n and Yk = (ηk1 , η

k
2 , . . . , η

k
m−1)T .

Using Y0 = 0 , substitution into (16) leads to

ηk+1
i + µk+1

i (ηk+1
i − ηk+1

i−1 )− r(1)
i,k+1

i+1∑
l=0

gγ,lη
k+1
i+1−l − r

(2)
i,k+1

m−i+1∑
l=0

gγ,lη
k+1
i−1+l

= bα,kη
0
i +

k−1∑
j=0

(bα,j − bα,j+1)ηk−ji +Rk+1
i , (25)

where i = 1, 2, . . . ,m− 1 , k = 0, 1, 2, . . . , n− 1 .

Applying Theorem 3, with (14), we obtain

‖Yk‖∞ ≤ Cτ−α‖Rk‖∞ ≤ C(τ + h).

Therefore, the following theorem is valid.

Theorem 5 Let uki be the numerical solution computed by use of the inm (16)
and (17). Then there is a positive constant C , such that

|uki − u(xi, tk)| ≤ C(τ + h), i = 1, 2, . . . ,m− 1 , k = 1, 2, . . . , n . (26)

5 Numerical result

This section presents an example to demonstrate that the inm is a compu-
tationally effective method, and the computed result is in good agreement
with theoretical analysis.
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Table 1: The maximum error between the exact solution and the numerical
solution max |uki − u(xi, tk)|.

∆t ∆x β = −1 β = −0.5 β = 0 β = 0.5 β = 1.0
0.1 0.1 8.6E-2 8.2E-2 8.3E-2 9.0E-2 1.0E-1
0.05 0.05 5.2E-2 5.4E-2 5.7E-2 6.2E-2 6.8E-2
0.025 0.025 2.9E-2 3.0E-2 3.3E-2 3.5E-2 3.8E-2
0.0125 0.0125 1.5E-2 1.6E-2 1.7E-2 1.9E-2 2.0E-2

We consider the following stffpe

∂αu

∂tα
= −∂u

∂x
+

(
1

2
+
β

2

)
Dγ
a+u+

(
1

2
− β

2

)
Dγ
b−u+ f(x, t),

where 0 < t ≤ 1 , 0 < x < 1 , and the initial and boundary conditions are

u(x, 0) = 21x2(1− x)2 , (27)

u(0, t) = 0 , u(1, t) = 0 , (28)

and

f(x, t) = 10Γ(α + 2)tx2(1− x)2 + 2(21 + 10tα+1)(x− 3x2 + 2x3)

− (1 + β)(21 + 10t1+α)

[
x2−γ

Γ(3− γ)
− 6x3−γ

Γ(4− γ)
+

12x4−γ

Γ(5− γ)

]
− (1− β)(21 + 10t1+α)

[
(1− x)2−γ

Γ(3− γ)
− 6(1− x)3−γ

Γ(4− γ)
+

12(1− x)4−γ

Γ(5− γ)

]
.

The exact solution of the above equation is u(x, t) = (21+10t1+α)x2(1−x)2 .

Table 1 shows the maximum absolute numerical error, at time t = 1.0 ,
between the exact solution and the numerical solution obtained by inm. From
Table 1, our inm yields convergence with O(τ + h).
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6 Conclusions

An inm for the stffpe in a bounded domain has been described and demon-
strated. We prove that the inm is unconditionally stable and convergent.
This method and technique can be applied to solve fractional (in space and
in time) partial differential equations.
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