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Numerical validation of microwave heated
fluidised bed calcination of waste containing

ceramic powders
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Abstract

This study corresponds to the first phase of the development of a
microwave heated fluidised bed for calcination of waste (metal nitrate
salts) containing ceramic powders under H2/N2 reducing atmosphere.
The power is delivered through the top end of the calciner at 2.45GHz.
Apart from the experimental investigations, the study also involved
microwave analysis to approximately predict the mode numbers cor-
responding to specific solutions of the characteristic field equations in
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the cavity as a function of powder bed height. The calculations re-
veal the dominant modes expected to propagate in the calciner. Here,
a finite-volume time-domain technique simulates the electromagnetic
phenomena inside the empty and loaded calciner. Because of the ge-
ometry of the calciner, special stair-case type boundary conditions
ensure accurate calculations of the fields at the cylindrical conducting
walls of the cavity. The simulation results confirm the experimen-
tally observed mode structure inside the calciner. Thus the numerical
technique can capture the nature of the modes in the case when the
calciner is empty and loaded with a ceramic powder.
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Figure 1: The calciner and its components.

1 Introduction

For many years microwave technology has been a cheap source of energy in
many different industrial applications [1]. More recently, specific applications
related to fluidised beds have been of interest [2, 3]. These types of processes
have wide ranging applications not only in electromagnetics, but also in fluid
dynamics.

In this paper, a prototype fluidised bed calciner has been constructed
from a 405 mm long stainless steel pipe with 108mm inside diameter (see
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Figure 1). The calciner is used to investigate heating of titanate based pre-
cursors and SiC powders. The system that delivers the electromagnetic en-
ergy to the fluidised bed was built to provide variable power between 0.6
and 6 kW. This power is delivered through the top end of the calciner at
2.45GHz. Microwaves were excited by a wr340 te10 mode waveguide. Mi-
crowave reflections from the calcination cavity and the fluidised powder bed
were measured for different titanate precursors and SiC powder as a func-
tion of bed height. Apart from the experimental investigations, the study
also involved microwave analysis to approximately predict the mode num-
bers corresponding to specific solutions of the characteristic field equations
in the cavity as a function of powder bed height. Maps of te11p oscillation
modes for the cavity were generated for an empty and powder loaded cav-
ity, in the case of a Transverse Electric (te) field with a 11 mode in the x
and y-coordinate directions, and p modes in the longitudinal, or z-coordinate
direction.

A numerical finite-volume time-domain technique (fv-td) [4] was imple-
mented to simulate the electromagnetic phenomena inside the empty and
loaded calciner shown in Figure 1. Although in the past high order methods
have been investigated [5, e.g.], here we use second order schemes as they are
adequately capable of obtaining the nature of the solution.

2 Mathematical model

The Maxwell’s equations [6] that govern the electromagnetic phenomena
evolving in this configuration are

∇× ~E = −∂ ~B

∂t
, ∇× ~H =

∂ ~D

∂t
+ ~J . (1)

In equation (1), ~E and ~H are respectively the electric and magnetic field

intensities, ~D and ~B are the electric and magnetic flux densities. The con-
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Figure 2: A coarse mesh that shows the stair-casing around the edges.
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stitutive relations are

~D = ε ~E , ~B = µ0
~H , ~J = σ ~E , ε = ε0ε

′ , σ = ωε0ε
′′ , (2)

where µ0 is the magnetic permittivity, or permeability, of free-space, ε0 is
the electric permittivity and σ is the conductivity. The conductivity is a
measure of the material’s ability to absorb electromagnetic energy, and is
equal to σ = ωε0ε

′′, where ω = 2πf and f is the frequency. Usually for
dielectric materials, the relative permittivity in complex form is written as
εr = ε′− iε′′ , where ε′ is the relative dielectric constant and ε′′ is the relative
loss factor. In this work a Cartesian mesh is used to discretise the rectangular
waveguide and a stair-case mesh is used to mesh the oversized cylindrical
chamber (see Figure 2). The finite-volume discretisation is constructed by
integrating Maxwell’s equations over a discrete cell located in the mesh [4]:

∂ ~Hp

∂t
=

1

µ0δv

∑
Γ∈ζp

~n× ~EΓδs ,
∂ ~Ep

∂t
=

1

εδv

∑
Γ∈ζp

~n× ~HΓδs −
ωε′′

ε′
~Ep . (3)

where p is the location at the cell centre at which the electric and mag-
netic field unknowns are stored. Γ is a particular cell face of a finite-volume
cell, which comprises faces ζp, and ~n is the unit outward normal to face Γ.
Equation (3) is solved using either one of the classical ode solvers for the
partial time derivative, or some other time discretisation technique is applied.
For this investigation a leapfrog in time discretisation is used to resolve the
partial time derivatives, which has been found previously [4] to provide time
efficiency compared to high-order time discretisation techniques like rk3 and
rk4. For a second order time discretisation and, as an illustration, taking
only the first component of both the electric and magnetic fields, the leapfrog
scheme is(

∂Ex

∂t

)
p

'
(Ex)

n+1
p − (Ex)

n
p

δt

,

(
∂Hx

∂t

)
p

'
(Hx)

n+ 1
2

p − (Hx)
n− 1

2
p

δt

, (4)

where δt is the time step of the finite-volume time-domain numerical solver.
The representations for the y and z components of the fields are also cast
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in a similar form to (4). Consequently, equation (3) is now resolved in time
using (4), and hence, the finite-volume time-domain discretisation for a cell
is calculated as:

~H
n+ 1

2
p = ~H

n− 1
2

p − δt

µ0δv

∑
Γ∈ζp

~n× ~En
Γδs , (5)

~En+1
p =

2ε− σδt

2ε + σδt

~En
p +

2δt

(2ε + σδt) δv

∑
Γ∈ζp

~n× ~H
n+ 1

2
Γ δs. (6)

Obtain equations (5) and (6) by substituting (4) into (3), and rearranging
respectively for the magnetic and electric fields at the highest time level,
which formulates the discrete point form of the time-marching algorithm.

3 Boundary condition treatment

In this section, the treatment of the boundary conditions for the incident
plane, conducting walls, material interface and absorbing layers are briefly
elucidated.

3.1 Incident plane

The apparatus in Figure 1 is excited using a rectangular waveguide attach-
ment, which generates TE10 incident modes that propagate into the calciner.
The generated modes have a specific nature and are captured using the y-
component of the electric field, and the x-component and z-component of
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the magnetic field. The nature of these fields are

Ey = E0 sin
(πx

a

)
cos (ωt− β0z0) ,

Hx = − β0

ωµ0

E0 sin
(πx

a

)
cos (ωt− β0z0) ,

Hz = − π

ωµ0a
E0 cos

(πx

a

)
sin (ωt− β0z0) , (7)

where

E0 = 2

√
P0

abε0

, β0 =

√
ω2µ0ε0 −

(π

a

)2

.

In equation (7), P0 is the average input power of the waveguide, z0 is the loca-
tion of the plane of incidence, and a and b are the cross-sectional dimensions
of the waveguide in the x and y directions, respectively.

3.2 Conducting walls

Conducting wall boundary conditions for the electric and magnetic fields are

~n× ~E = ~0 , ~n · ~H = 0 , (8)

where ~n is assumed to be the unit normal vector pointing outwards from the
domain of the apparatus. Effectively, (8) implies that the tangential compo-
nents of the electric field and the normal components of the magnetic field
are zero on the conducting walls. For an apparatus that has rectangular
sides the implementation of these boundary conditions is straightforward [4].
However, in this work, since a regular Cartesian mesh was used for the dis-
cretisation of the whole domain, special care was taken at curved surfaces.
A stair-case approach was used to capture the behaviour of the electric and
magnetic fields at the conducting walls of the cylinder. The adaptation of
the stair-case boundary treatment for the finite-volume time-domain method
proposed here appears novel.
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Figure 3: The stair-case mesh to approximate a curved surface. The bold
line depicts the outline of the calciner wall and the dashed line illustrates the
cell used in the numerical scheme.



3 Boundary condition treatment C43

Figure 3 illustrates the mesh at the curved surfaces of the calciner. Since
for the fv-td method, see equations (5) and (6), the unknowns are stored
at the cell centres, any cell centres that lie outside of the curved surfaces are
subsequently not considered in the numerical scheme. Volumes of cells δv are
appropriately adjusted for use in the fv-td equations. The axes were chosen
such that the z-coordinate was aligned with the longitudinal dimension of the
calciner. Also, the origin was located at the centre of the plane of incidence.
This allowed for easy approximation of the volumes of the cells required in
the fv-td method at the edge of the calciner. For Figure 3 assume that C is
at location (x, y) and P and Q are needed to calculate the area as dx× dy/λ.
From this area, the volume of the cell is δv = dx× dy × dz/λ, where λ is the
factor that removes the area from each cell that lies outside of the curve with
radius r. If P and Q are known, then λ is calculated using vector algebra.

3.3 Material interface

At material interfaces the dielectric properties change, and this change in the
electromagnetic behaviour at the interface is governed by:

~n× (Em − Ea) = ~0 ,

~n ·
(

~Dm − ~Da

)
= 0 ,

~n×
(

~Hm − ~Ha

)
= ~0 ,

~n ·
(

~Hm − ~Ha

)
= 0 , (9)

where m is an adjacent cell unknown right at the material interface, and
a is the neighbouring unknown in free-space or air. From equation (9) it is
evident that the electric field is discontinuous at a material interface, while
the magnetic field is continuous. The implementation at the material inter-
face is therefore not straightforward, and requires a special approximation to
capture the electric field propagation and reflection at the boundary.
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Using adjacent cells to the material interface, a second order Taylor ap-
proximation finds the unknowns right on the face of the material. For the
purposes of providing an accurate approximation for the facial value of the
electric field on an interface the following new formulation that uses the
assumption of plane wave behaviour near an interface is made:

(Eu)p+ 1
2

=
βm

βa + βm

(Eu)p +
βa

βa + βm

(Eu)p+1 , (10)

where

βi ∝
√

ε′i

[
1 +

√
1 + (ε′′i /ε

′
i)
]
, i = a, m .

3.4 Absorbing layers

When propagating electromagnetic waves into waveguides and cavities, some
of the fields will be absorbed and others will be reflected. These reflected
waves propagate back up to the waveguide. Consequently, arrangements in
the numerical algorithm must be made to absorb these reflected electric and
magnetic field components from interfering with the phase and amplitude of
the incident wave. We adopt the perfectly matched layer discussed in [7]. To
achieve this, Maxwell’s equations are rewritten in a different form so that the
impedance of free-space is matched to the impedance of the layer introduced
to remove these unwanted electromagnetic waves [7]. The new equations are
discretised using the finite-volume strategy [4] to obtain the following point
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representations inside the absorption layer:

~En+1
p = ~En

p +

(
2εδt + σδ2

t

2ε2δv

) ∑
Γ∈ζp

~n× ~H
n+ 1

2
Γ δs +

σδ2
t

ε2δv

~F
n− 1

2
p , (11)

~F
n+ 1

2
p = ~F

n− 1
2

p +
∑
Γ∈ζp

~n× ~H
n+ 1

2
Γ δs ,

~H
n+ 1

2
p = ~H

n− 1
2

p −
(

2µ0δt + σ̄δ2
t

2µ0δv

) ∑
Γ∈ζp

~n× ~En
Γδs −

σ̄δ2
t

µ2
0δv

~Gn−1
p , (12)

~Gn+1
p = ~Gn−1

p +
∑
Γ∈ζp

~n× ~En
Γδs .

Note that only the components of the fields in the propagation direction (that
is, normal components) are treated with (11) and (12); all other fields (that
is, tangential components) are still governed by (5) and (6). The choice of σ
for the material is such that as the waves propagate inside the material the
conductivity of the material increases.

4 Results and discussion

This work involved the modelling of the calciner, which is an apparatus
that delivers electromagnetic energy to a material loaded at the bottom of
the cylindrical chamber (see Figure 1). Figure 4 depicts the solution of
the time averaged electric field inside the calciner. In the figure, the wider
section is of most importance, which corresponds to the cylindrical chamber.
The apparatus was discretised into approximately 410 000 Cartesian cells,
however to exhibit the nature of the mesh and to provide insight into how
the domain was decomposed, a coarse mesh is shown in Figure 2.

Figure 4 illustrates the results for both the empty and loaded chambers.
From the results it is evident that the mode structure in the empty chamber
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Figure 4: te11p numerical results for the empty and loaded chamber.
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resembles the TE115 mode as predicted analytically and confirmed from the
maps of the oscillation modes. When the chamber is loaded with the ceramic
powders, the mode observed in the cylindrical section of the chamber is
changed to TE118 for a material with dielectric property εr = 2.54 − 0.15 j
and bed height of 0.3m. This change is a result of the reduced wavelength
inside the material due to the material’s properties. The result obtained for
the loaded chamber also corresponds to the experimental observations.

5 Conclusions and future work

These preliminary investigations considered the prototype calciner used for
the purpose of nuclear waste treatment at the Australian Nuclear Science and
Technology Organisation. We focused on the development of a numerical
algorithm to model the behaviour of the electromagnetic fields within the
heating apparatus or calciner.

The domain of the problem was discretised using a regular mesh with
some special boundary condition implementation to capture the curvature of
the apparatus. An existing finite-volume time-domain method [4] was used
with a stair-case mesh to approximate the unknowns at cylindrical conduct-
ing boundary walls. The algorithm predicted the nature of the fields within
the calciner both in the case when there is no material present, and also in
the case when the calciner is loaded with ceramic powders. Solutions from
the numerical algorithm verified the observed TE115 and TE118 modes for an
empty and loaded calciner, respectively.

Future work will see the investigation of reflections within the calciner,
which focuses on modelling the heat distribution inside the material and
how this heating affects the reflections that occur at the material interface
interacting with the evolving electromagnetic fields.
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