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Direct simulation of fountains with
intermediate Froude and Reynolds numbers
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Abstract

Fountains with intermediate Froude and Reynolds numbers are of
fundamental interest, especially for understanding the mechanism of
turbulence and entrainment in turbulent fountains. However there
has been little work done to investigate the behavior of these transi-
tional fountains. In this work, the transient behavior of axisymmetric
fountains with 1 ≤ Fr ≤ 8 and 200 ≤ Re ≤ 800 is studied by direct
numerical simulation. It is found that when Re ≤ 200, there is little
mixing between the downflow of the fountain and the ambient, even
for Fr as high as 8; However, when Re ≥ 400, the mixing between
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the fountain downflow and the ambient becomes stronger, indicat-
ing that the entrainment and the turbulence are mainly due to Re
and the contribution from Fr is much smaller; The maximum foun-
tain penetration height zm fluctuates, even when the flow reaches the
quasi-steady state, due to the interaction between the downflow and
the bottom boundary and/or the entrainment between the downflow
and the ambient; The averaged zm scales with FrRe1/4 for 1 < Fr ≤ 8
and 100 ≤ Re ≤ 800.
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1 Introduction

Fountains are common both in industry and in nature. In any process where
a dense fluid is steadily injected upward into a miscible and less dense fluid
(or in the reverse case, when lighter fluid is injected downward into a denser
ambient fluid) a fountain-type structure forms.

Extensive studies have been carried out on turbulent fountains with high
values of Fr (� 1) and Re (≥ 800) (see, for example, [1, 2, 3, 4, 5]), where Fr
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and Re are the Froude number and Reynolds number:

Fr =
V0

(R0σ0)1/2
, Re =

V0R0

ν
, (1)

in which V0, R0, σ0, and ν are, respectively the discharge velocity, source
radius, reduced gravity between the fountain and the ambient fluid, and
kinematic viscosity of the fluid. For these turbulent fountains, the maximum
fountain penetration height Zm was found to scale with Fr:

Zm

R0

= C1Fr , (2)

where C1 is a proportional constant found experimentally to be in the range
of 2.06 to 2.88 [1, 2, 4, 5].

For fountains with a weak source, the influence of the discharge momen-
tum of the fountain is equal to or less than that of the negative buoyancy
and Zm is of the order of R0. The fountain is then characterized by small
values of Fr (≤ 1.0) and Re (≤ 500). Such fountains have no distinguishable
upward and downward flows, instead the streamlines curve and spread from
the source. Our recent analytical and numerical studies showed that these
weak fountains demonstrate different behavior patterns to those of turbulent
fountains [6, 7, 8, 9, 10]. It was found that Zm has the following scaling
relation with Fr and Re,

Zm

R0

= C2FrRe−1/2 , (3)

where C2 is another proportional constant. The behavior of unsteady foun-
tains with intermediate values of Fr (1 ≤ Fr ≤ 20) and Re (200 ≤ Re ≤ 1000),
which are in the transitional regime from laminar to turbulent flow, is of fun-
damental interest for understanding the generation mechanism of turbulence
and entrainment within turbulent fountains. Despite this no studies have
been found in which the behavior of these fountains is investigated, which
motivated us to carry out the current study.
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In this study, we investigate the behavior of unsteady axisymmetric foun-
tains with the intermediate values of 1 ≤ Fr ≤ 8 and 200 ≤ Re ≤ 800 by
direct numerical simulation. The major findings are that the entrainment
and the turbulence are mainly due to Re and the contribution from Fr is
much smaller, the maximum fountain penetration height fluctuates, even
when the flow reaches the quasi-steady state, due to the interaction between
the downflow and the bottom boundary and/or the entrainment between the
downflow and the ambient, and the averaged maximum fountain penetration
height scales with FrRe1/4 for 1 < Fr ≤ 8 and 100 ≤ Re ≤ 800 .

2 Numerical methods

The physical system under consideration is a vertical circular container con-
taining a Newtonian fluid initially at rest and at temperature Ta, the sidewall
is non-slip and insulated and the top is open. On the bottom centre, an ori-
fice with radius R0 is used as the fountain discharge source. The remaining
bottom region is a rigid non-slip insulated boundary. At time t = 0 , a stream
of fluid at T = T0 < Ta is injected impulsively into the container from the
source to initiate the fountain and this discharge is maintained thereafter.
Due to the symmetry of the system geometry and the boundary and ini-
tial conditions as well as the weak fountain discharge, the fountain flow is
axisymmetric and laminar.

The flow is described by the following Navier–Stokes and temperature
equations, which are written in non-dimensional form in cylindrical coordi-
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nates with the Boussinesq assumption as,

1

r

∂

∂r
(ru) +

∂v

∂z
= 0 , (4)

∂u

∂τ
+

1

r

∂

∂r
(ruu) +

∂

∂z
(vu) = −∂p

∂r
+

1

Re

{
∂

∂r

[
1

r

∂

∂r
(ru)

]
+

∂2u

∂z2

}
, (5)
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∂τ
+

1

r

∂

∂r
(ruv) +
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∂z
+

1
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[
1

r

∂

∂r

(
r
∂v
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)
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∂2v
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+

1

Fr2 θ,(6)

∂θ

∂τ
+

1

r

∂

∂r
(ruθ) +

∂

∂z
(vθ) =
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RePr

[
1

r

∂

∂r

(
r
∂θ

∂r

)
+

∂2θ

∂z2

]
, (7)

where Pr is the Prandtl number. In these equations all lengths, velocities,
time, pressure, and temperatures are made dimensionless by R0, V0, R0/V0,
ρV 2

0 , (T0 − Ta), respectively, where ρ is the fluid density.

The direct numerical simulations have been carried out using a finite vol-
ume method. The governing equations are discretized on a non-staggered
mesh, with standard second-order central differences used for the viscous,
pressure gradient, and divergence terms, whereas the quick third-order up-
wind scheme is used for the advective terms. The momentum and temper-
ature equations are solved using an adi scheme. The second-order Adams–
Bashforth scheme and Crank–Nicolson scheme are used for the time integra-
tion of the advective terms and the diffusive terms, respectively. To enforce
the continuity, the pressure correction method is used to construct a Pois-
son equation, which is solved using the preconditioned generalized minimum
residual (gmres) method. A nonuniform mesh of 298 × 297 grids has been
used in this study to enable the regions of rapid solution variation to be ac-
curately resolved while limiting the total number of nodes. Detailed descrip-
tions of these schemes were given in [6, 7] and the code has been successfully
used for the simulation of a range of buoyancy dominated flows.



2 Numerical methods C71

τ=50 τ=100 τ=150 τ=200

τ=250 τ=350 τ=750τ=500

Figure 1: The temperature contours at times τ = 50 , 100, 150, 200, 250,
350, 500, and 750 for Fr = 8 and Re = 200 .

τ=50 τ=100 τ=150 τ=200

τ=250 τ=350 τ=750τ=500

Figure 2: The temperature contours at times τ = 50 , 100, 150, 200, 250,
350, 500, and 750 for Fr = 6 and Re = 400 .
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(a) Re=200 (b) Re=600

Figure 3: The profiles of the fountain width rw based on the temperature
θ = −0.01 contour and the upflow width ru based on the vertical velocity
v = 0 contour for: (a) Re = 200 ; and (b) Re = 600 with Fr = 6 at τ = 750 .
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Figure 4: The time series of zm for: (a) Fr = 1 , 2, 4, 6 and 8 with Re = 200 ;
and (b) Re = 100 , 200, 400, 600 and 800 with Fr = 6 .

3 Results

To show the behavior of fountains with intermediate values of Fr and Re, a
series of direct numerical simulations have been carried out for axisymmetric
fountains with selected values of Fr and Re. Specifically, Fr = 1 , 2, 4, 6 and
8 with Re = 200 and Pr = 7 are used to show the dependence on Fr, and
Re = 100 , 200, 400, 600 and 800 with Fr = 6 and Pr = 7 are used to show
the dependence on Re.

To provide an overview of the transient behavior of fountains with in-
termediate values of Fr and Re, visualizations of the numerically simulated
transient temperature contours at 8 specific moments are presented in Fig-
ure 1 for Fr = 8 and Re = 200 and Figure 2 for Fr = 6 and Re = 400 .
The major flow patterns observed are that when Re ≤ 200 , there is little
mixing between the downflow of the fountain and the ambient, even for Fr
as high as 8. However, when Re ≥ 400 , the mixing between the downflow of
the fountain and the ambient becomes stronger, indicating that the entrain-



3 Results C74

0 20 40

0

10

20

30

FrRe1/4

z m
,a

v

0 5 10
0

0.2

0.4

0.6

0.8

Fr

z m
, s

td

0 500 1000
0

1

2

3

4

Re

z m
, s

td

(a) (b) (c) 

Figure 5: (a) zm,av against FrRe1/4; and standard deviation of zm,av

against Fr, (b), and Re, (c), for 2 ≤ Fr ≤ 8 and 100 ≤ Re ≤ 800 .
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Figure 6: The profiles of the fountain width rw and the upflow width ru

with selected values of Fr and Re.
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ment and further the turbulence are mainly due to Re and the contribution
from Fr is much smaller, as clearly shown in Figure 3. It is also found that the
maximum fountain penetration height zm, where zm is non-dimensionalized
by R0, fluctuates instead of keeping constant, even when the flow reaches the
quasi-steady state, as it should do when Fr ≥ 1 [6].

The magnitudes and frequencies of the fluctuations of zm for selected
values of Fr and Re are presented in Figure 4. The fluctuations are the
results of the interaction between the fountain downflow and the bottom
boundary and/or the mixing (entrainment) between the fountain downflow
and the ambient.

For fountains with intermediate values of Fr and Re, it is expected that zm

has the following scaling relation with Fr and Re,

zm ∼ Frf(Re) , (8)

where ‘∼’ denotes ‘scales with’ and f(Re) represents a ‘function of Re’. The
specific form of the function can be determined experimentally and/or nu-
merically.

The numerical results presented in Figure 5(a) give the following scaling
relation for 1 < Fr ≤ 8 and 100 ≤ Re ≤ 800 ,

zm,av = 0.974 FrRe1/4 − 2.623 . (9)

where zm,av is the averaged maximum fountain penetration. The standard
deviations of zm,av, which represent the magnitudes of the fluctuations of zm,
that is, the interactions between the fountain downflow and the bottom
boundary and/or the entrainment between the fountain downflow and the
ambient, are presented in Figure 5(b) and 5(c) for different values of Fr
and Re, respectively. These results and the numerical results presented in
Figure 6, where the profiles of the fountain width rw and the upflow width ru

are shown for selected values of Fr and Re, give further confirmation that the
entrainment and the turbulence are mainly due to Re and the contribution
from Fr is much smaller.
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4 Conclusions

1. When Re ≤ 200 , there is little mixing between the downflow of the
fountain and the ambient, even for Fr as high as 8. However, when
Re ≥ 400 , the mixing between the downflow of the fountain and the
ambient becomes stronger, indicating that the entrainment and further
the turbulence are mainly due to Re and the contribution from Fr is
much smaller.

2. The maximum fountain penetration height zm fluctuates instead of
staying constant, even when the flow reaches the quasi-steady state,
resulting from the interaction between the fountain downflow and the
bottom boundary and/or the mixing (entrainment) between the foun-
tain downflow and the ambient.

3. Numerical results show that the averaged maximum fountain pen-
etration height zm,av scales to Fr and Re1/4 for 1 < Fr ≤ 8 and
100 ≤ Re ≤ 800 .
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