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Skirting subsets of the plane, with application
to marginal stability curves
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Abstract

An easily implemented algorithm is described for tracing the mar-
gin of a plane region defined by a predicate. Given a point inside and
one outside, a sequence of marginal points is produced. The algorithm
is a modified specialization of the ‘simplicial decomposition’ method
for n equations in n + 1 dimensions. The case n = 1 has special prop-
erties and its importance motivates their present exploitation. It is
directly applicable to finding level curves. It does not require differ-
entiability and copes well with cusps. Two questions of accuracy are
the proximity of the outputs to the margin and the proximity of the
margin to the output set. The first is answered precisely. The second
is complicated and predicate-dependent, but is addressed in practical
terms by adaptivity, which also improves the scheme’s efficiency.
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1 Introduction

Consider the problem of determining the marginal set of a predicate on a
plane convex region; that is, the set of points for which every neighbourhood
includes a point for which the predicate is true and one for which it is false.

An important general example is the curve f(x, y) = 0 , which can be
characterized as the marginal set of the predicate P (x, y) ≡ f(x, y) < 0 .1

1Logical notation: ≡ equivalence; ¬ negation.
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A specific practical example arises in connection with the Orr–Sommerfeld
equation of linear hydrodynamic stability theory [3, p. 157]. This governs
the stability of a parallel flow with Reynolds number R with respect to in-
finitesimal disturbances of wavenumber α. For each pair (R, α), if the Orr–
Sommerfeld spectrum is not confined to the lower half complex plane the flow
is unstable. Thus, denoting the eigenvalues by c, a stability predicate might
be P (R,α) := max=c < 0 . More details can be found in the accompanying
paper [7].

This note describes an algorithm for approximating a margin by a se-
quence of points; no knowledge of the predicate (for example, the smoothness
of an underlying function f) is required, just the ability to evaluate it.

The nonadaptive version of the algorithm described in § 2 is essentially a
special case with n = 1 of the simplicial decomposition method for finding
the curve f(x) = 0 for a function f : Rn+1 → Rn described by Allgower
& Georg [2, p. 161]. This special case received a similar treatment recently
from Mezher & Philippe [8]; the present work goes further by incorporating
adaptivity (§ 3).

Section 4 presents results of the adaptive algorithm for a simple predi-
cate with a cusped margin, and illustrates the huge efficiency gain due to
adaptivity. Section 5 compares the algorithm with alternatives, particularly
those previously employed for Orr–Sommerfeld stability margins.
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2 Simple skirting algorithm

2.1 Preliminaries

2.1.1 The rectangular metric

Although the algorithm is geometric in character, the planes in the envis-
aged applications are parameter planes rather than physical planes so that a
rectangular metric is appropriate. To this end, define the inner product as
〈a,b〉 := bT Ga where G := diag τ−2 and the norm as

‖a‖ := 〈a, a〉1/2 =
(
aT Ga

)1/2
=

{(
a1

τ1

)2

+

(
a2

τ2

)2
}−1/2

, (1)

so that a unit disk ‖a − a0‖ < 1 contains the points considered equal to a0

to within the specified tolerances. For example, in the stability margins in
the accompanying paper [7], the horizontal coordinate runs over [0, 32 000]
while the vertical range is [0, 5] . Thus we might use tolerance components
of τ1 = 1 and τ2 = 10−4 .

Two operators required later are the matrix to rotate through θ radians

RG,θ = G−1/2

[
cos θ − sin θ
sin θ cos θ

]
G1/2 =

[
cos θ − τ1

τ2
sin θ

τ2
τ1

sin θ cos θ

]
, (2)

and the matrix to project on to the span of a vector a

proja =
aaT G

aT Ga
. (3)
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2.1.2 Bisection

Given a point each from the truth set and its complement; that is, a trans-
verse pair; a marginal point can be located to arbitrary accuracy, as shown
in the constructive proof of the following existence

Theorem 1 If D is convex and contains a pair a and b traverse withe respect
to a predicate P , then the segment [a,b] = {(1 − k)a + kb : 0 ≤ k ≤ 1}
contains a marginal point of P .

Proof: Set a0 := a and b0 := b , then for n = 0, 1, 2, . . . define mn := (an+
bn)/2 , which is contained in D by convexity. Define [an+1,bn+1] as [mn,bn]
if P (mn) and as [an,mn] otherwise. Then P (an) ≡ P (a) ≡ ¬P (bn) ≡ ¬P (b)
for all n, and limn→∞mn = limn→∞ an = limn→∞ bn is a point in D and all
[an,bn] . Any neighbourhood of m∞ contains an infinite number of terms
from the sequences {an} and {bn} and thus at least one true and one false
point. Therefore m∞ is marginal point for P . ♠

This is, of course, an adaptation of the bisection method for finding zeros
of continuous univariate functions. The procedure is described in Algorithm 1
in terms of the stepping procedure in Algorithm 2 which is also required later

Algorithm 1: Bisect(a ∈ D,b ∈ D, P : D → {T, F}, τ ∈ R2)

Require: P (a) ≡ ¬P (b)
Ensure: Bisect is within tolerance of a marginal point of P
1: u := a , v := b ; {# Preserve a and b from modification. #}
2: do
3: Bisect := Step(u,v, P, 1

2
)

4: until ‖v − u‖ < 1
2

for the skirting algorithm.
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Algorithm 2: Step(a ∈ D,b ∈ D, P : D → {T, F}, L : R2 → R2)

Require: P (a) ≡ ¬P (b)
Ensure: P (a) ≡ ¬P (b) and one of a and b has been changed.
1: Step := a + L(b− a) ;
2: if P (Step) ≡ P (a) then
3: a := Step else b := Step fi

2.2 Accessing the second dimension

Given a transverse pair a,b , another can be found by taking any point c ∈ D
not collinear with a and b. Then if P (c) ≡ P (a) , c and b are transverse,
otherwise a and c are. One choice for c is that point forming an anticlockwise
equilateral triangle with a and b [8]; using (2)

c := a + RG,π/3(b− a) . (4)

The state is now equivalent to the initial condition, so stepping can repeat
indefinitely, as in Algorithm 3. Figure 1 illustrates Algorithm 3 for the pred-

Algorithm 3: Skirt(a,b ∈ D, P : D → {T, F}, τ : R2)

Require: P (a) ≡ ¬P (b)
Ensure: An infinite sequence of points within tolerance of P ’s margin.
1: do {# until interrupted #}
2: Step(a,b, P, RG,π/3) ;
3: Print(Bisect(a,b, P, τ))
4: od

icate
P (x, y) := y <

√
|x|+ x2 . (5)

for which the true margin has a cusp at the origin but away from that ap-
proaches y = |x| . Such a curve would trouble or foil a predictor–corrector
continuation method [2, pp. 13–15] since the tangent flips at (0, 0) .
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u0

v0

u1

v2

Figure 1: Simple skirting (Algorithm 3) on predicate (5); true margin
dashed and outputs marked ‘◦’. Left : The first three transverse segments
are [u0,v0] , [u1,v1 = v0] , and [u2 = u1,v2] . Right : first 15 steps.

This method of selecting the new point differs from the Coxeter flipping
scheme proposed by [2, p. 154] although they both lead to affine transforma-
tions of Freundenthal’s triangulation of the plane. The present method leads
to simpler bookkeeping in two dimensions, though not for higher dimensions.

Mezher & Philippe’s [8] integer coordinates for a triangular grid also
involve considerably more bookkeeping; however, they do have a distinct
advantage when the margin is a closed curve (see § 2.3). Aside from its
simplicity, the present approach is preferred because it allows adaptive control
of the step size (§ 3).

2.3 Termination criteria

The two possible outcomes are that the sequences of triangles and marginal
points will either leave D or (at least in exact arithmetic) return to the
original triangle (and therefore the first found marginal point) and thereafter
cycle [2, p. 162]. This is the counterpart of the fact that connected level curves
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of continuous functions are homeomorphic to either the line or the circle [2,
p. 2]. Although the former possibility is more typical for Orr–Sommerfeld
marginal curves, the latter also occur in related problems [6, Figure 16].

The unbounded case is handled by testing whether we remain in D.

The cyclic possibility is best treated by considering the triangular grid
implied by the images of a line segment under the transformation. This
was the choice of Mezher & Philippe [8], since their application was level
curves of resolvent norms (‘pseudospectra’) which they proved bounded. This
approach was rejected here, since it renders adaptive step sizing much more
difficult, although the sequential quaternary addressing system used in the
analysis of Sierpinski’s triangle [9, p. 93] might be a possibility.

The crude catchall of a limit to the number of iterations is also useful.

3 Adaptive skirting algorithm

3.1 Measures of accuracy

Two measures of accuracy for the algorithm are the proximity of output
points to the margin, and the proximity of the margin to the output points.
These are not the same! See Figure 1: all outputs lie near the margin, but
some points on the margin are far from any output points.

The first measure is covered by Theorem 1.

The second is a problem of interpolation, so that little can be said about it
without restricting the predicate. Analysis texts are replete with pathological
examples such as P (x) ≡ (xi is rational) for which the marginal set is R2 [11,
p. 10], but predicates arising in applications are usually better behaved; for
example, the Orr–Sommerfeld stability predicate is continuous and piecewise
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differentiable. Numerical experience suggests that at least when the marginal
set forms a piecewise smooth curve satisfactory results are obtained as the
resolution of the triangulation is decreased. At any rate, the present method
is quite analogous to representing functions R → R by tables or plots of
values at equally spaced abscissas, and similarly, the margin is most obviously
reconstructed by linear interpolation. This suggests the local departure of
the margin from a straight line as a measure of accuracy. Using the norm (1)
and projector (3) of the rectangular metric, the perpendicular distance from
a point c to the line containing points a and b is∥∥c−

{
a + proj(b−a)(c− a)

}∥∥ . (6)

This is used in §§ 3.2–3.3 to develop an adaptive step size skirting algorithm.

3.2 Adaptive skirting

Using (6), the perpendicular distance of the latest marginal point from the
line containing the last two can be compared against a specified tolerance
to assess the adequacy of resolution. If the distance is excessive, the last
marginal point and transverse pair can be discarded (m2, u2, and v2 in
Figure 2) and the second last transverse pair (u1 and v1) shrunk about
their marginal point (m1), checking that the pair remain transverse (§ 3.4).
If the distance is acceptable, the latest transverse pair can be expanded
about their marginal point, again checking that transverseness is maintained.
Quantitatively, for shrinking halving has proven workable in practice, but
for expanding the ratio of the tolerance to the distance, capped at some
maximum (for example, 1.2), has been used.

There is no need to enforce a minimum step length since once the trans-
verse points become sufficiently close, the next marginal point will be so close
to the last that its projection on to the line of the last two points cannot
lie outside the acceptable circle; this follows from the triangle inequality as
applied to (6).
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m0

u1=u2
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v2
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p

Figure 2: The adaptivity criterion: ‖m2 − p‖ .

3.3 Initialization

The main adaptive skirting loop (§ 3.2) requires two previous marginal points,
so that an initialization is required before the loop can be entered. This
can be done by taking the initial transverse pair (u0 and v0 with marginal
point m0 in Figure 3) and forming another (u0s and v0s) by moving each
point halfway toward the marginal point m0, checking that truth-values are
maintained. Then step each forward to form m1 and m1s. If m1 is close to
the line containing m0 and m1s, the main loop can be begun using u1 and
v1 with m1 and m0 as the last two marginal points.

Adaptivity complicates the coding, so the algorithm is not listed here. For
example, the gnu Octave [4] implementation2 occupies eighty lines of code
compared with less than twenty for the minimal implementation of § 2. Most
of the additional code is needed for checking if points change truth-value
during shrinking or expansion transverse and finding alternatives when they
do. Nevertheless, this is well rewarded since the reduction in the number of
predicate evaluations required exceeds the expansion in the number of lines

2Available from the author’s website http://www.aeromech.usyd.edu.au/~mcbain/
stability/skirting.html

http:// www.aeromech.usyd.edu.au/~mcbain/stability/skirting.html
http:// www.aeromech.usyd.edu.au/~mcbain/stability/skirting.html
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p

Figure 3: Initialization of adaptive skirting. After copying and shrinking
the first triangle, the criterion becomes ‖m1 − p‖ .

of code, as demonstrated in § 4.

3.4 Maintaining truth values

With adaptivity, it is often necessary to shrink or expand transverse pairs.
It is essential that the end points retain their truth values. As an example,
say in Figure 2 the deviation is deemed excessive so that u1 and v1 are to
be shrunk but that P (u1) changes as a result (this would not occur for the
margin shown in Figure 2): then the old and new u1 are transverse and
can be used thereafter, discarding v1. If expansion causes a change of truth
value, the expansion can be aborted. If the shortened segment in Figure 3
differs logically from the initial, the initialization should begin again with a
new shorter pair such as u0 and u0s.
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Figure 4: Adaptive skirting of predicate (5) beginning from (−2, 3) and
(−2, 2) with τ1 = τ2 = 10−3 and dogleg tolerance (6) 128, 64, . . . , 1 . The true
margin is dashed; solid line segments connect the output skirting points.

4 Example

The result of applying the adaptive skirting algorithm to predicate (5) is il-
lustrated in Figure 4. The bisection tolerance τ was chosen so that the points
lie on the margin to within graphical accuracy while the dogleg tolerance was
tightened to exhibit the efficacy of the algorithm in penetrating into cusps
and then recovering step length as the curve straightens again.

The bottom left item of Figure 4 (dogleg tolerance 8) contains 66 points
and required 968 predicate evaluations. To obtain a similar resolution of
the cusp without adaptivity required 8594 evaluations. Experience with the
algorithm suggests that this ratio is typical, and that even greater savings
would be obtained if the margin were to be followed a considerable distance
beyond the cusp.



4 Example C90

5 Discussion and conclusion

Some Orr–Sommerfeld marginal curves are easily traced by assuming that the
marginal curve defines a function R(α) = 0 ; for example, the cubic velocity
profile [7]. This of course fails at turning points, but can be remedied by
simple parameter switching [5, e.g.].

Allen [1] proposed applying pseudo-arclength continuation methods [2,
p. 4], and found them useful in computing the marginal curves of the Ekman
boundary layer. These methods require the Jacobian, and so are more com-
plicated to derive and program than the present method; they also encounter
difficulties in regions where f has discontinuous derivatives. This occurs, for
example, even in the simple case of Poiseuille flow [10, Figure 3.8].

The special features distinguishing the simple skirting algorithm from the
generic piecewise linear continuation method [2] follow from the restriction
of the dimension of the domain to two, so that the simplices are triangles
and their ‘facets’ line segments. The former renders the task of selecting
the ‘exit facet’ trivial and the latter permits the use of Theorem 1. These
features are common to pat [8]; and the present method is distinguished from
that by its efficient adaptivity and simpler bookkeeping (even the adaptive
version is considerably shorter than pat). pat has the advantage of robustly
recognizing closed curves, and is also suited to parallelization since each
bisection is a separate job not influencing later execution.

Examples of the use of the algorithm to trace linear hydrodynamic sta-
bility margins can be seen in the accompanying paper [7].
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