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Natural convection in a vertical slot: accurate
solution of the linear stability equations

G. D. McBain∗ S. W. Armfield†
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Abstract

The linear stability of natural convection in a fluid between verti-
cal hot and cold walls was studied using a collocation method. Seven
figure accurate results for monotonic disturbances were obtained by
Ruth (1979) using numerical power series, but this method is intrinsi-
cally limited and failed for Pr > 10 . In contrast, Chebyshev colloca-
tion converges more rapidly and allows the computation of results at
higher Pr for which oscillatory disturbances dominate. Accurate re-
sults are now obtained across the entire Prandtl number range. These
match the zero and infinite Pr asymptotes which are also refined here.

∗School of Aerospace, Mechanical & Mechatronic Engineering, The University of
Sydney, Australia. mailto:geordie.mcbain@aeromech.usyd.edu.au

†ditto, mailto:armfield@aeromech.usyd.edu.au
See http://anziamj.austms.org.au/V45/CTAC2003/McB2/home.html for this arti-

cle, c© Austral. Mathematical Soc. 2004. Published March 23, 2004. ISSN 1446-8735

mailto:geordie.mcbain@aeromech.usyd.edu.au
mailto:armfield@aeromech.usyd.edu.au
http://anziamj.austms.org.au/V45/CTAC2003/McB2/home.html


ANZIAM J. 45 (E) ppC92–C105, 2004 C93

Contents

1 Introduction C93

2 Problem formulation C95
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . C95
2.2 Zero Prandtl number . . . . . . . . . . . . . . . . . . . . . C96
2.3 Large Prandtl number . . . . . . . . . . . . . . . . . . . . C96

3 Numerics C98
3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . C98
3.2 Solution of the algebraic problems . . . . . . . . . . . . . . C99
3.3 Organization of the computations . . . . . . . . . . . . . . C99

4 Results C100
4.1 Stability margins . . . . . . . . . . . . . . . . . . . . . . . C100
4.2 Critical Grashof numbers . . . . . . . . . . . . . . . . . . . C101

5 Conclusion C103

References C103

1 Introduction

Natural convection between vertical walls held at different temperatures is
a classical problem in fluid mechanics [13] and has applications in the sepa-
ration of isotopes [11] and the insulation value of double-pane windows [2].
Laminar convection (Figure 1) is unstable if the temperature difference (or,
in dimensionless terms, the Grashof number, Gr) is sufficiently high. Here
we seek the critical Gr: the smallest Gr for which the flow becomes unstable
to infinitesimal perturbations.
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Figure 1: Laminar vertical slot natural convection [20].

Most previous numerical methods, such as eigenfunction expansions [12,
6] and numerical power series [17], failed for large Prandtl numbers (Pr: the
ratio of kinematic viscosity to thermal diffusivity). In another problem where
oscillatory disturbances are important—convection in fluids with variable
properties—Suslov & Paolucci [19] achieved high accuracy with a Chebyshev
collocation method. Adopting a similar method here, we have extended the
accurate results of Ruth [17] for Pr 6 10 across the entire Pr number range.
Further, the method is applied to the Pr → 0 [4] and Pr →∞ [10] equations
to find the asymptotes to the same high precision.

The high Pr behaviour turns out to be quite complicated, with the final
asymptotic behaviour not appearing until Pr is higher than 103 ; this may be
relevant to flows of Pr ≈ 104– 106 liquids like lava or cane molasses.



1 Introduction C95

2 Problem formulation

2.1 Governing equations

The dimensionless Oberbeck equations of natural convection are [15](
∂

∂t
+ u · ∇ − 32

Gr
∇2

)
u = −∇p+

64

Gr
T ̂ , (1)(

Pr

{
∂

∂t
+ u · ∇

}
− 32

Gr
∇2

)
T = 0 , (2)

and ∇·u = 0 . Steady solutions with zero net vertical flow rate and indepen-
dent of altitude y satisfy u = V (x)̂ and T = Θ(x) , where V ′′(x) = −2Θ(x)
and Θ′′(x) = 0 . For boundary conditions V (±1) = 0 , Θ(±1) = ∓1 , the
exact solution is V (x) = (x3 − x)/3 and Θ(x) = −x [20]; see Figure 1.

The evolution of infinitesimal plane disturbances is governed by the Orr–
Sommerfeld equation with a buoyancy term, plus a similar equation for the
temperature fluctuation [8]. In block form Lq = cMq , where L = iαGr

64

{
V

(
α2

4
−D2

)
+ V ′′

}
+

(
α2

4
−D2

)2

2D

−Θ′ V + 64
iαGrPr

(
α2

4
−D2

)
 , (3)

M =

[
iαGr

4

(
α2

4
−D2

)
0

0 16

]
, q =

[
ψ
θ

]
, (4)

and D ≡ d/dx . The boundary conditions are ψ(±1) = ψ′(±1) = 0 and
θ(±1) = 0 . This is an eigenvalue problem for the complex wave speed c.
Modes are stable or unstable as =c < 0 or =c > 0 .
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2.2 Zero Prandtl number

As Pr → 0 with Gr = O(1) , the temperature perturbation equation reduces
to (α2/4 − D2)θ = 0 , so that all temperature perturbations decay [9], and
the stability problem reduces to an Orr–Sommerfeld equation [4][

iαGr

64

{
V

(
α2

4
−D2

)
+ V ′′

}
+

(
α2

4
−D2

)2
]
ψ = c

iαGr

4

(
α2

4
−D2

)
ψ . (5)

2.3 Large Prandtl number

Results at high Pr for a related problem guided Gill & Kirkham [10] to the
appropriate asymptotic expansion: powers of iPr−1/2 with Gr = O(Pr−1/2) .
Explicitly, set S = GrPr1/2 , q = q0 + iPr−1/2q1 , c = c0 + iPr−1/2c1 , L =
L0 + iPr−1/2L1 , and M = M0 + iPr−1/2M1 . Then

(L− cM)q ∼ (L0 − c0M0)q0 (6)

+ [(L0 − c0M0)q1 − {c1M0 − (L1 − c0M1)}q0] iPr−1/2

+O(Pr−1) , (Pr →∞) .

Here, at zeroth order, there is a generalized eigenvalue problem

(L0 − c0M0)q0 = 0 , (7)

and at first order an inhomogeneous equation

(L0 − c0M0)q1 = {c1M0 − (L1 − c0M1)}q0 . (8)

Let 〈·, ·〉 denote some inner product and A∗ the adjoint of an operator A
so that 〈Aq, r〉 = 〈q, A∗r〉 for all q and r. Assume r is a solution of the adjoint
of (7), (L0−c0M0)

∗r = 0 . The inner product of an arbitrary χ with either side
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of this equation gives 〈χ, (L0− c0M0)
∗r〉 = 0 , so that 〈(L0− c0M0)χ, r〉 = 0 .

Putting q1 from (8) for χ, we obtain an equation for the determination of c1:

c1〈M0q0, r〉 = 〈(L1 − c0M1)q0 , r〉 . (9)

The point of this abstract discussion is that any inner product can be
used. Gill & Kirkham [10] used 〈q1, q2〉 =

∫ 1

−1
(ψ∗

2ψ1 + θ∗2θ1)dx . However,
after discretization q is a vector and an alternative is the Euclidean scalar
product 〈q, r〉 = q · r . This is both more convenient and more accurate
numerically.

Since we are more interested in S than c1 at the neutral condition

=c = 0 , (10)

we decompose L1 = SL11 + L12/S and M1 = SM11 in (9) so that (10) with
c ∼ c0 + iPr−1/2c1 becomes Pr−1/2<c1 = −=c0 or

S2<{κ〈(L11 − c0M11)q0, r〉}+ SPr1/2=c0 + <{κ〈L12q0, r〉} = 0 , (11)

where κ = 〈M0q0, r〉−1 .

The operators appearing in this quadratic for S are

L11 − c0M11 =

[
α
64
{(V − 16c0)(

α2

4
−D2) + V ′′} 0

0 0

]
, (12)

and

L12 =

[
0 0

0 −64
α

(
α2

4
−D2

)]
. (13)

It turns out that for the problems of interest the zeroth order eigenvalues
and eigenvectors are real; in this case we have

Scrit =

{
−〈L12q0, r〉

〈(L11 − c0M11)q0, r〉

}1/2

. (14)
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3 Numerics

3.1 Discretization

The above problems were discretized by ordinate-based interior collocation.
That is, if {xi}n

1 are distinct points in [−1, 1] and {φj(x)}n
1 polynomials of

degree n − 1 with the property φj(xi) = δij , so that for any function f(x),∑
j φj(x)f(xj) is the polynomial interpolant, then differentiation is approx-

imated by differentiation of these interpolants. The dth derivative at the
ith point can be written as a matrix-vector product:∑

j

φ
(d)
j (xi)f(xj) ≡

∑
j

D
(d)
ij fj . (15)

Boundary conditions are enforced by multiplying each basis function by
an appropriate coercion function: φ̃j(x) ≡ βj(x)φj(x)/βj(xj) . These retain
the interpolant property φ̃j(xi) = δij . For example, βj(x) = (1− x2)p forces
f (q)(±1) = 0 for q < p . The modified differentiation matrices are given by

D̃
(d)
ij =

d∑
k=0

(
d

k

)
β

(d−k)
j (xi)

βj(xj)
D

(k)
ij . (16)

Here the Chebyshev–Lobatto points

{xi}n
1 = cos

jπ

n+ 1
(17)

are used so that

φj(x) =
T ′

n+1(x)

(x− xj)T ′′
n+1(xj)

, (18)

where Tn(cos θ) = cos(nθ) .
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For the second derivative matrix, D(2), the coercion function is β(x) =
(1−x2), and β(x) = (1−x2)2 for D(4). The use of different coercion functions
and therefore interpolants for the same function may seem unnatural, but is
necessary to prevent the ‘mass matrix’ M in (4) from being overdetermined
which would introduce spurious eigenvalues [21].

The computations were carried out in Octave [7] using a public domain
collocation library [21].

3.2 Solution of the algebraic problems

The discrete generalized eigenvalue problems (L− cM)q = 0 were converted
to standard form in two ways.

First, since M is invertible due to the careful imposition of boundary con-
ditions (see § 3.1), an equivalent problem is M−1Lq = cq . The discrete spec-
trum was then obtained from the QR Schur factorization, as implemented
in lapack’s ZGEEV [1] and Octave’s eig. This transformation is unavailable
for the high Pr problem (7) since M0 = [ 0 0

0 16 ] is singular.

Second, if σ is not an eigenvalue, (L − σM) is invertible, and the shift-
and-invert transformation [18] is Ex = µx where E = (L − σM)−1M and
c = σ+1/µ . The transformed problem was solved by simple power iteration.
This method was directly coded in Octave. Better results were obtained after
a two-sided diagonal scaling [1] was applied to L and M.

3.3 Organization of the computations

The methods of §§ 3.1–3.2 were used to solve problems at a given Pr, Gr,
and α. For given Pr, the values of Gr and α were selected automatically by
a new curve following method [14] so as to trace the linear stability margin
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Figure 2: Linear stability margins at low Prandtl numbers (Pr = 0.7 and 7),
also showing (short dashes) Pr → 0 and (long dashes) Pr →∞ asymptotes.

max=c = 0 . Finally, critical values (minima of Gr with respect to α) were
refined by golden section search.

4 Results

4.1 Stability margins

The stability margins for the most important cases, air (Pr ≈ 0.7) and water
(Pr ≈ 7), are shown in Figure 2; they differ little from the zero Pr asymptote.

As Pr increases, a second lobe representing oscillatory instability appears
for a narrow range of α near Gr ∼ 5700/α (Figure 3). The least Pr for which
this occurs was first estimated at 11.4 [5], but this is a difficult problem. We
found that for Pr 6 11.57 the lobe lies in {α < 0.1} ∪ {Gr > 5× 104} .

As Pr increases further, the oscillatory lobe widens and for Pr > 12.454
becomes dominant (Figure 3). This refines the estimates Pr ≈ 12 [5], 12.5 [6],
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Figure 3: Linear stability margins at high Pr; see also Figure 2.

and corrects the widely quoted [3, 17, e.g.] 12.7 [12].

The two lobes merge, forming a cusp, somewhere in 20 < Pr < 100 [6];
this is another difficult number to estimate, but Figure 3 suggests it is near
80. The oscillatory lobe continues to widen as the Prandtl number increases.
Its lower branch lies near the Pr →∞ asymptote for all Pr.

4.2 Critical Grashof numbers

The critical parameters for linear instability are shown in Table 1 and Fig-
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Pr Gr α c× 103 Pr Gr α c× 103

0 7930.0551 2.6883 0 104 87.6102 2.5633 ±8.470
101 7871.4561 2.7665 0 105 29.2301 2.5050 ±8.491
102 749.6258 2.4203 ±8.168 106 9.402155 2.4800 ±8.497
103 251.1985 2.6209 ±8.403 ∞ 9435.4/

√
Pr 2.4737 ±8.494

Table 1: Critical data, complementing Table 1 of Ruth [17].
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ure 4. The dependence of the critical Grashof number on Pr for low Prandtl
numbers is weak but complicated with a minimum near Pr = 0.1 and a
maximum near 0.5 [16]. The monotonic branch lies near the Pr → 0 asymp-
tote (Gr ∼ 7930.0551) for all Pr. Accurate critical data for Pr < 10 have
been published by Ruth [17]. These were confirmed by the present study
(Figure 4).

As noted in § 4.1, the oscillatory mode becomes critical for Pr > 12.454 .
Hitherto [10] it was known that critical Gr ∼ const×Pr−1/2 , but two different
values of the constant have been circulated: 9.4× 103 [10] and 7.52× 103 [5].
The cause for this 20% discrepancy is now clear: the higher figure is based
on a high Pr expansion (and has been here refined using the method of § 2.3
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to 9435.3767); whereas the lower figure was apparently extrapolated from
numerical results for Pr up to 100. It turns out that the lower ‘asymptote’ is
just a stationary point and that above Pr = 102 , the critical GrPr1/2 increases
again, finally approaching the true asymptote for Pr > 105 . Earlier large
Prandtl numbers studies [12, e.g.] were unable to achieve sufficient accuracy
to distinguish between these asymptotes or resolve this matter.

5 Conclusion

Chebyshev collocation allows accurate solution of the linear stability equa-
tions for natural convection in a vertical slot over the entire range of Pr.
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