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Wavelet analysis of instrumented rocket motor
data

D. H. Smith∗
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Abstract

Second generation wavelets by the lifting scheme are applied to
irregularly sampled data from instrumented rocket motors and com-
pared with a complementary discrete Fourier approach. Particular
attention is given to ill-conditioning induced by mesh irregularity.
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1 Introduction

Transforming data to an alternative domain is often useful in revealing fea-
tures not immediately apparent in the original measurements. The ubiqui-
tous discrete Fourier transform [6] involves a complete switch to the frequency
domain, providing frequency content and forfeiting evolution information.
Wavelet transforms retain this information, providing a multi-scale decom-
position which simultaneously captures evolution behaviour across a range
of scales. This study is concerned with the application of discrete Fourier
and wavelet transforms to irregularly sampled data from an exploratory data
analysis perspective, with some emphasis given to properties and behaviour
of the wavelet systems. Comparisons are drawn between the two different
representations and the wavelet noise reduction facility is demonstrated. It
is also shown that severe mesh irregularity has the potential to destabilise a
wavelet basis, an ailment which is easily curable by an svd approach.

2 DWT’s and DFT’s on irregular meshes

For discrete data on irregular meshes, standard analysis methods like discrete
Fourier or first generation wavelet transforms are not immediately applicable.
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A simple option is to interpolate the data onto an equally spaced mesh and
then apply these methods, however this incurs extra computational expense
and can raise more issues than it solves, such as choice of interpolation scheme
and the introduction of artefacts. For these reasons the transforms under
consideration will be constructed on the original irregular meshes.

2.1 Second generation wavelets by the lifting scheme

Second generation wavelets constructed by the lifting scheme [8] reside on
finite intervals and break free from the constraints inherent to their first
generation counterparts, such as restriction to regular meshes. The lifting
scheme [8] factorises a discrete wavelet transform into a sequence of lifting
steps [3], each playing a specific role in shaping the wavelets and scaling
functions that constitute the resulting multi-resolution analysis framework.

Discrete data (ti, yi) is considered to reside on the top level of a mesh
hierarchy, with level j comprising 2j intervals. The first lifting step, or lazy
wavelet, is a down-sampling that transfers values onto the next coarse grid

yj−1,k = yj,2k , γj−1,k = yj,2k+1 .

Subsequent dual lifting is a high pass filter involving prediction of the odd
indexed values from the fine level to yield wavelet coefficients representing
the deviation between fine and coarse level approximations

γj−1,k = γj−1,k − P (. . . , yj−1,k, yj−1,k+1, . . . ) ,

or loss in detail. Primal lifting is a low pass filter responsible for maintaining
a lower resolution version of the data via an update

yj−1,k = yj−1,k + U(. . . , γj−1,k−1, γj−1,k, . . . ) ,

where the update operator U is chosen to impart one or more vanishing
moments on the primal wavelet functions. Additional lifting steps may then
be performed to produce desired properties on the mra [8].
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Figure 1: Irregularly sampled stress response data, comprising 7270 points,
in the time, frequency and Haar wavelet domains.



2 DWT’s and DFT’s on irregular meshes C110

2.2 A discrete Fourier transform

A dft for irregular temporal sampling may be defined by mapping the data
to [0, 2π) and considering trigonometric interpolation [1]

yj =

(N−r)/2∑
k=−(N+r)/2

αke
iktj , j = 0, . . . , N (r = rem(N, 2)) , (1)

which reduces to the usual dft in the regularly sampled case. These equa-
tions represent an inverse transform to recover the data from its Fourier
coefficients, and the required task is accurate approximation of the coeffi-
cients given (tj, yj). To avoid construction of the matrix Ajk = eiktj , the
right hand side of (1) is approximated by truncated Taylor series expan-
sions about the nearest neighbours of the irregular nodes tj, from a regular
grid, with all function evaluations and derivatives rapidly computed by the
fft. The solution of (1) is then sought by Generalised Minimal Residual
(gmres) iteration preconditioned with a normal fft, defining the forward
transform. On highly irregular grids with large disparity in time steps, the
equally spaced frequencies in (1) may be poorly matched to the actual fre-
quencies present in the data, with the highest value not sufficiently large,
leading to ill-conditioning and slow convergence.

3 Application to data

Figure 1 plots stress response data from a sensor inside a rocket motor sub-
jected to ambient thermal loading conditions over 190 days [5]. Apart from
the obvious large gap, mesh irregularity is present across the entire inter-
val. Both discrete transforms will now be applied to compare some of their
properties on this data set, including the issue of scale-frequency parity.
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3.1 Wavelet and Fourier representations

A discrete Haar wavelet transform, with predict and update

P = yj−1,k , U =
∆j,2k+1

∆j−1,k

γj−1,k , (∆jk = tj,k+1 − tjk , j ≤ n) ,

produces a spectrum which can be viewed in several ways. One is to simply
plot the coefficients γjk at their respective scales and locations, giving the
diagram in Figure 1 where each vertical band coincides with a resolution level
and houses its 2j coefficients. To see the actual evolution occurring on each
level, wavelet components are defined by the summation

ψj(t) =
2j−1∑
k=0

γjkψjk(t) , j = 0, . . . , n− 1 ,

and obtained by repeated inversion with all coefficients set to zero except
those on level j. A notable feature of this plot is the locally large values
emanating from both sides of the data gap, an effective singularity, which is
connected with the singularity detection properties of wavelets. Accompa-
nying the wavelet spectrum is a dft amplitude spectrum with five Taylor
series terms, produced after gmres stagnation at relative residual 0.086 . In
this representation the time axis is absent and a peak is present at daily fre-
quency, which lies near levels 7–8 in the wavelet domain, where a clear bulge
is visible in the coefficient envelope. Figure 2 illustrates this scale-frequency
parity by giving truncated wavelet and Fourier expansions with components
above daily resolution removed, also demonstrating the lack of smoothness
inherent to Haar wavelets. Reconstruction errors for truncated wavelet ex-
pansions are also shown alongside equivalent Fourier truncations, indicating
similar behaviour with respect to the level of compression. The distinct el-
bow in these curves is related to a transition between dominance of fine scale
noise-like features and their larger scale counterparts in the reconstruction.

While the dft identifies daily frequency components which are not as
readily apparent in the Haar spectrum, it does so at enormous computational



3 Application to data C112

54 56 58 60 62 64 66 68

−0.1

−0.05

0

0.05

0.1

Time (Days)

S
tre

ss
 R

es
po

ns
e 

(m
V

)

Data
Fourier
Haar j=7
j=8

101 102 103
10−1

100

Compression Ratio

R
el

at
iv

e 
E

rr
or

Fourier
Haar
Lifted Haar (3,1)
Linear (2,1)
Lifted (4,1)

Figure 2: Truncated wavelet and Fourier expansions of the data in Figure 1,
showing daily reconstructions and error behaviour for several wavelets.
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cost relative to the dwt, and loses evolution information in the process. The
cost disparity is largely due to poor gmres convergence and could be reduced
by a better preconditioner, possibly employing wavelets.

3.2 Detection of thermal measurement oscillation

A second data set comprising 22979 stress response measurements under a
more aggressive thermal cycling between ±50◦ over approximately 300 days
is shown in Figure 3, displaying typical viscoelastic relaxation during the
cold cycle portions. Oscillatory behaviour, which clearly displays different
amplitude characteristics during the hot, cold and shorter transition periods,
is elucidated by considering wavelet components. The figure includes Haar
and linear (2,1) components, constructed by a linear predict operator, on
the finest scale (j = 14) and a coarser scale (j = 10), during the fourth
cold cycle and its neighbouring transition regions. Perhaps the most striking
feature is an abrupt vanishing of the finest scale components outside the cold
region, suggesting a certain thermal dependence of the measuring device.
Daily components represented on the coarser scale j = 10 display some local
irregularity in the transition neighbourhood due to suspected non-physical
data spikes, and persist into the transition unlike their fine scale counterparts.

3.3 Ill-conditioning induced by mesh irregularity

Application of dual lifting to the linear (2,1) wavelet system yields new coef-
ficients according to a second predict operation performed after the update

γj−1,k = γj−1,k +
2∑

l=−1

θk
j−1,k+lyj−1,k+l , (2)

which draws on additional neighbours and generates new primal scaling func-
tions, primal wavelets and dual wavelets, while leaving the dual scaling func-
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Figure 3: Thermal cycling data with Haar and linear (2,1) wavelet compo-
nents on levels 14(top) and 10(daily).
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tions unchanged [8]. A refinement relation expresses the dual wavelets in
terms of dual scaling functions on adjacent resolution levels

ψ̃j−1,k = −βj−1,kϕ̃j,2k + ϕ̃j,2k+1 + (1− βj−1,k)ϕ̃j,2k+2 +
2∑

l=−1

θk
j−1,k+lϕ̃j−1,k+l ,

from which the necessary integration is performed to enforce four vanishing
moments, producing a linear system of equations to be solved on each coarse
grid cell for the dual lifting coefficients θk

j−1,k+l. The exact solution is ex-
pressed in terms of neighbouring cell widths on adjacent resolution levels,
reducing to ± 1

16
on regular grids, with symmetric wavelets.

Application of (2) to the data set in Figure 1 confirms an expected
smoothing effect on the level components, however the same treatment on
the data of Figure 3 produces an unexpected outcome, in which level com-
ponents contain spikes as high as 107. Inversion still recovers the original
data, however to achieve this means precarious cancellation is taking place
between excessive wavelet components on different levels, in much the same
way as for ill-conditioned least squares data fitting [6]. The damage is caused
here by a pathological case of grid irregularity, with sudden large changes in
grid spacing generating dual lifting coefficients exceeding one in magnitude,
causing divergence of the subdivision scheme responsible for the wavelets
and scaling functions. This ill-conditioning of the wavelet basis has also
been observed by Simoens and Vandewalle in the context of biorthogonal
wavelet systems constructed by average interpolating subdivision [7], and
cured by the application of constrained local semi-orthogonalisation, which
offers stabilisation with preserved vanishing moments at the expense of al-
tering the wavelet support. An alternative approach which maintains the
wavelet support while compromising vanishing moments involves truncated
svd solutions, in which large solution components along near null space vec-
tors with small singular values are removed [6]. Table 1 provides details of
this process at one of only 7 grid locations in which instability arises during
the first transform step, showing typical hallmarks of ill conditioning in the
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Figure 4: Cure of ill-conditioned (4,1) wavelet basis by svd truncation,
accompanied by close up views of soft thresholding on the data of Figure 3.
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Table 1: Local ill conditioning caused by severe grid irregularity during the
first step of a (4,1) wavelet transform applied to the data in Figure 3.

Exact Formula svd k = 1 k = 2 k = 3 k = 4
‖θ‖ 95.1242 7.8210e-9 4.3517e-5 0.2928 0.5593

‖Aθ − b‖ 15.74 0.9882 0.2056 780.7 784.5

computed residual behaviour. Cure of the wavelet components on level 2 is
shown in Figure 4, displaying the regularisation process as k varies.

3.4 Noise reduction by coefficient thresholding

Thresholding is the selective removal or reduction of wavelet coefficients with
the aim of producing a “cleaned” signal upon inversion. The implication is
that the signal is essentially composed from a relatively small number of
“large” coefficients, while “small” coefficients are attributed to noise and can
be discarded. Hard thresholding replaces such coefficients with zero while
soft thresholding also shrinks the remaining coefficients by an amount equal
to the deviation between threshold and coefficient. Consider the data as
values of a function contaminated by zero mean additive noise

yj = f(tj) + εj , (3)

and apply a wavelet transform via the sparse matrix W . The resulting com-
puted wavelet coefficients will then be unbiased estimates of their exact coun-
terparts, and for uncorrelated noise of variance σ2 the covariance matrix is

V = E
[
(Wε)(Wε)T

]
= σ2WW T ,

from which individual coefficient variance appears on the diagonal. The ma-
trix WW T , dependent only on the particular wavelet system and temporal
grid, emerges as a key indicator of noise structure in the wavelet domain, pro-
viding the mechanism for noise distribution among resolution levels. Corre-
lation dependent thresholding [2], designed for biorthogonal wavelet systems,
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applies a modified universal threshold to coefficient γjk

δjk = σ̂jk

√
2(1 + ζ) logM , (4)

where σ̂jk is a standard deviation estimate for γjk, ζ is a bound on the cross
correlation between wavelet coefficients on different levels and M is the total
number of wavelet coefficients. Normalising the computed wavelet coefficients
by their variance and applying a median absolute deviation estimate gives
σ̂jk without prior knowledge of the noise variance σ2 [4].

Figure 4 shows soft thresholding results on the data of Figure 3 by three
wavelet systems, with Haar clearly showing its smoothness disadvantage. In
each case thresholding is performed on coefficients from the top half of reso-
lution levels. Suspected non-physical large spikes, or outliers, are essentially
untouched by the process, which only acts against small quantities.

4 Summary and conclusions

Biorthogonal wavelet systems built by the lifting scheme were applied to
irregularly sampled data from thermally loaded rocket motors, with com-
parisons drawn against a complementary discrete Fourier transform. Poor
convergence of the iterative dft algorithm due to inadequate preconditioning
limited its application despite successful identification of daily components,
while similar data reconstruction error behaviour was observed for truncated
and Fourier expansions. In a different data set the mathematical microscope
property of wavelets was demonstrated in separating thermal oscillatory be-
haviour associated with the measuring device. A case of pathological grid ir-
regularity uncovered instability in the dual lifted (4,1) wavelet system, which
was cured by the application of svd methods, however a precise understand-
ing of this in terms of biorthogonality needs further study. Limited noise
reduction results with several wavelets pointed against the use of Haar while
confirming the need for additional outlier procedures.
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