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Dynamic reconstruction of instrumented
rocket motor data

D. H. Smith∗
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Abstract

Data from instrumented rocket motors is subjected to dynamic
reconstruction by time delay embedding, with a focus on local linear
and global nonlinear prediction, and associated parameter estimation.
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1 Introduction

Measured time series data contains valuable information about the dynamics
of an underlying process which can be extracted by time delay embedding
techniques, with the potential to obtain fundamental properties and invari-
ants [1]. On this basis, nonlinear predictive models can be constructed from
the data, as demonstrated by Casdagli for a number of test systems [5]. This
study is concerned with such models for the case of a thermally forced sys-
tem in which forcing and response data are both available. Key aspects of
the model construction are examined, including local linear and global non-
linear approximation, with particular attention paid to the singular value
decomposition and its vital role in the overall process.

2 Dynamic reconstruction from data

2.1 Time delay embedding

For a measured data series, (y0, y1, . . . , yj, . . . , yN), time delay embedding
proceeds by constructing a pseudo phase space of time delay vectors [1]

xk = [yk, yk+τ , . . . , yk+(d−1)τ ]
T ,
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which are characterised by two parameters, dimension d and delay τ . These
are considered to evolve under a nonlinear discrete map

xk+τ = [yk+τ , yk+2τ , . . . , yk+dτ ]
T = f(xk) , (1)

to generate a trajectory matrix with columns comprising the delay vectors ar-
ranged in chronological order. This constitutes a projection of the unknown
system state vector onto a finite dimensional subspace, the dimension of
which needs to be sufficiently large in order to properly capture the dynam-
ics. According to the Takens embedding theorem [11], d ≥ 2m+1 is sufficient
if the true system attractor resides within an m dimensional manifold, allow-
ing access to the system dynamics via delay coordinates, with the attractor
manifold embedded in Rd. If d is too small, nearest neighbours in the re-
constructed phase space will be close due to projection, not dynamics, a fact
underlying the false nearest neighbour criterion for determining embedding
dimension [3]. Choice of time delay τ rests on information theoretic criteria,
independent of the topological considerations associated with embedding di-
mension [1]. A basic guiding principle is the requirement that information
in two successive delay coordinates be as independent as possible, without
introducing excessive delay. Too small means too much correlation and too
large means insufficient causal connection, with useful guidance provided by
consideration of the quantity average mutual information [7].

In the laboratory experiment context, forcing is often applied to a system
under study to induce particular behaviour for analysis. When the forc-
ing data is also available, an extension of Takens theorem [4] involves delay
vectors augmented with the input data uj in the form

xk = [yk, yk+τ , . . . , yk+(d−1)τ , uk, uk+τ , . . . , uk+(d−1)τ ]
T

which also evolve under a discrete map similar to (1). The particular data un-
der consideration derives from thermal forcing applied to solid rocket motors
containing internal sensors and is amenable to this type of reconstruction.
Another attribute of the data requiring attention is the presence of irregular
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sampling, which is dealt with by utilising “fuzzy” delay coordinates [2], in
which successive values are chosen with spacing as close as possible to the
nominal delay τ , without applying interpolation.

2.2 Local linear approximations

Given suitable trial values for dimension and delay, a useful first step in the
reconstruction process is to consider a linearisation of the nonlinear map (1)

xk+τ = f(xk) ≈ Akxk + bk (2)

where the local Jacobian Ak and vector bk are estimated from the available
data, specifically neighbours residing inside a ball in the pseudo phase space
centred at xk , exclusive, and their images under the map [9]. In this sense the
accuracy of (2) depends on the distribution of neighbours around xk , which in
turn depends on the amount of available data. Ideally, many neighbours are
required inside a small ball; however, as the number of neighbours available
for estimation shrinks with ball radius a compromise must be met. This study
will use a fixed number of neighbours, just enough to give an overdetermined
system amenable to least squares coefficient estimation, resulting in variable
ball radii and accuracy as the trajectory matrix is traversed.

2.3 Global nonlinear approximations

Appending nonlinear terms to (2) and considering element d of the nonlinear
map, containing the new response value one step ahead

yk+dτ ≈ b + aTxk +
M∑

j=1

αjφj(xk) (3)

where φj(x) comprise a set of basis functions. Choosing an estimation set
from the trajectory matrix and assembling the equations (3) produces an
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overdetermined set of linear equations with m = 2d + M + 1 columns

y ≈ Aθ (4)

where the columns of A represent constant, linear and nonlinear terms, with
number of rows n depending on the chosen estimation set. A convenient
choice for φj is the family of radial basis functions [5], defined with respect
to a set of centres cj , taken from the data,

φj(xk) = φ(‖xk − cj‖) ,

where φ may take a variety of possible forms.

2.4 Coefficient estimation

Coefficients for the local and global approximation processes are estimated
from the data via two variants of least squares estimation utilising the sin-
gular value decomposition [6]. Considering the over-determined system (4),
the unique least squares minimiser is defined by

θ∗ = V S−1UTy =
m∑

j=1

uT
j y

σj

vj (5)

where the left singular vectors uj , singular values σj and right singular vec-
tors vj reside in the matrices U , S and V that constitute the decomposition

A = USV T .

From the expansion (5), destabilisation effects of small singular values, or
ill-conditioning, become immediately evident, obviating the need for regular-
isation. Retaining the first k terms of (5) yields a family of truncated least
squares solutions, θk, k = 1, . . . ,m , possessing varying degrees of regulari-
sation corresponding to removal of small singular values. l curves [8] neatly
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unfold this process by considering parametric plots of solution norms against
their residual counterparts, rk = y − Aθk ,

rT
k rk = yTy −

k∑
j=1

(uT
j y)2 , θT

k θk =
k∑

j=1

(
uT

j y

σj

)2

indicating a balance between the conflicting demands of data/noise repro-
duction and smoothness by a characteristic “elbow”, where regularisation
error loses its dominance [6].

The ls formulation effectively treats the matrix A as error free, and more
appropriate in the current context is the concept of total least squares [6],
based on svd of the augmented matrix[

A y
]

= Ū S̄V̄ T .

Truncated tls solutions, filtered versions of their ls counterparts, involve
a family of trios (Âk, θ̂k, ŷk) , with θ̂k constructed from the final m + 1 −
k columns of V̄ , or null space basis for the augmented matrix, satisfying

Âkθ̂k = ŷk .

l curves are also applicable, with residual norms now comprising contribu-
tions from the matrix and right hand side.

3 Application to data

Figure 1 gives temperature input and response data comprising 7270 points
over 190 days, with irregular sampling and time normalised with respect to
the data length [10]. Based on false neighbour and mutual information calcu-
lations, trial delay and dimension values (d, τ) = (3, 0.08) will be used for the
subsequent reconstruction, producing a trajectory matrix with 1761 columns.
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Figure 1: Temperature input and response data series, comprising 7270
points with irregular sampling. Local linear response prediction with (d, τ) =
(3, 0.08) and svd truncation k = 1 is also shown alongside the data.
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It is emphasised that this serves for demonstration purposes and a more com-
prehensive study demands comparisons across a range of delay and dimension
values. For this particular choice of embedding parameters, traversing the
trajectory matrix and applying local linear prediction produces singular value
spectra featuring a distinct gap separating a single dominant value from its
counterparts, indicating a rank one tendency. Results of this prediction are
also shown in the Figure alongside the true data, demonstrating its smooth-
ing and spike reduction capacity.

Global nonlinear prediction is now considered with radial basis functions
φ = r on an estimation set comprising the first half of the trajectory matrix,
with centres taken from the whole matrix at equal intervals, producing a re-
gression matrix with 879 rows and singular value spectra shown in Figure 2
for 16, 32 and 64 centres. In each case there is an initial steep decrease
followed by a slower decay, with all values sufficiently large to avoid ill-
conditioning threats, as confirmed in the accompanying right singular vector
coefficient diagram. Increasing the number of centres lifts the curves slightly
and slows the decay, while the absence of a distinct spectral gap is the char-
acteristic signature of discrete ill-posed problems [6]. Associated l curves for
ls and tls approximation are shown in Figure 3, illustrating key differences
between the two formulations. For the ls case there is a large residual drop
between k = 1 and 2 at the start of the curve followed by relatively slow
decay and little solution growth while the tls case shows a steady residual
decline at the expense of larger solution coefficients. With respect to the
number of centres, the ls curves shift towards the origin as this increases,
producing only marginal residual improvements and solution growth while
tls offers far more substantial residual reductions.

To complement these l curves, a useful visualisation of the fitting pro-
cedure is provided by the scatter plots of Figure 4, which show predicted
values against their true data counterparts in the estimation set for 16 rbf
centres at various truncation levels, with residuals manifested as departure
from straight line behaviour. The plots represent selected points from the
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Figure 2: Singular value spectra and associated solution coefficients
from (5) for rbf approximation with φ = r on an estimation set comprising
the first half of the trajectory matrix and various numbers of centres.
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Figure 3: l curves for ls and tls corresponding to Figure 2, showing ls
residual stagnation while tls declines at the expense of a large solution.
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Figure 4: Scatter plots of predicted values against their data counterparts
in the estimation set, accompanied by a segment of the corresponding time
domain data, showing convergence of the tls result and ls stagnation.
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corresponding l curves in Figure 3, and illustrate superior convergence be-
haviour of the tls result as k is increased while its ls counterpart stagnates
after a few terms. In addition, the appearance of distinct vertical bands at
regular intervals reveals a fundamental property of the measurement device
not immediately evident in the time domain. Accompanying the scatter plot
is a segment of the corresponding time domain picture, in which the tls
prediction at k = 15 is indistinguishable from the data, unlike the ls result.

Moving outside the estimation set, out of sample prediction is considered
from both recursive and non-recursive viewpoints, the latter of which con-
stitutes one step ahead prediction. Figure 5 gives a selection of these results
at different truncation levels, showing a stark difference between the two ap-
proaches, with one step predictions tracking the data far more effectively. For
the recursive calculations, ls and tls results at high truncation, or small k,
produce similar behaviour as shown for k = 2 and 5, however at larger values
the bigger tls solutions, as indicated by their l curves, produce instability
and divergent behaviour while the ls results remain stable.

4 Summary and conclusions

Local linear and global nonlinear prediction based on time delay embedding
have been applied to measured data from a thermally forced solid rocket
motor, yielding satisfactory results from a small number of basis functions
relative to the data size, and demonstrating the svd as a valuable tool. Com-
parisons between ls and tls coefficient estimation for the global case have
shown very similar behaviour under heavy truncation, near the start of the
l curves, while the tls result displayed a tendency for strong coefficient
growth as the truncation is reduced, with the potential to destabilise recur-
sive out of sample prediction. Much scope exists for further investigation
with respect to embedding parameters, local prediction variants, alternative
nonlinear basis functions, and application to other data sets.
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Figure 5: Out of sample recursive and non-recursive nonlinear prediction
in the second half of the trajectory matrix at various svd truncation levels.
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