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Numerical analysis of lateral movement of a
metal strip during cold rolling
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Abstract

A model and numerical algorithm for the analysis of lateral move-
ment of a metal strip during cold rolling are presented. The model
includes a simplified description of the physical processes responsible
for strip lateral movement, such as plastic deformation of the strip,
elastic deformation of rolls, deformation and dynamics of the strip
outside the plastic reduction region. The study is motivated by the
operational problem experienced in the metal rolling industry. Nu-
merical simulations reveal possible mechanisms of strip track-off and
identify issues inviting further study.
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1 Introduction

Rapid lateral movement of a metal strip during rolling is an operational
problem that leads to serious consequences, such as strip chew-ups and mill
crashes. The fact that strip tracking failure occurs very rapidly poses major
problems for experimental study of the phenomenon and invites mathemati-
cal modelling. The problem became more pronounced with increased rolling
speed and attracted increasing attention of researchers over the last decade.
Several attempts to model the strip track-off phenomenon are reported in the
literature [1, 2, 3, 4]. However, because of the complexity of the problem, the
models either contain assumptions that limit their usefulness [2, 3, 4] or in-
volve empirical parameters that have to be adjusted when rolling conditions
vary [1].

In this paper, we develop a model that aims to take into account the
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main physical processes responsible for strip tracking, such as the plastic
deformation of the strip in the roll bite, the elastic deformation of the roll
stack and the dynamics and deformation of the strip outside the roll bite.
This work is an extension of the authors’ earlier work [4] that concentrated on
the causes of strip track-off within the plastic reduction region and ignored
the motion and deformation of the strip outside the roll bite. Because of the
complexity of the problem, and with a view to possible future application
in an on-line control system, we use simplified models that still adequately
describe the physics of the processes involved. The structure of the model
and the efficient numerical algorithm are briefly discussed.

The study in this paper concentrates on two cases representing the prac-
tical situations where strip track-off could occur:

1. the tail out situation (the rolling of the strip that has free end up-
stream);

2. the steady-state rolling of the strip that is constrained upstream in a
tension producing device.

Numerical simulations reveal that unstable tracking is intrinsic in the tail
out rolling under asymmetric conditions. It could also occur for a strip
constrained upstream, if the tension applied to the strip is not sufficient to
prevent strip buckling. Strip buckling is identified as major cause for strip
tracking failure and calls for further investigation.

2 Mathematical model

In this section, the constitutive parts of the model of lateral movement of the
strip during cold rolling are presented. An overall structure of the proposed
model and the efficient numerical procedure are also discussed.
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Figure 1: Schematics of a roll bite

2.1 Plastic deformation of the strip in the roll bite

In order to describe the vertical force acting on the strip in the roll bite (the
so-called roll force), we adopt a conventional approach based on a generalised
two-dimensional plastic deformation theory [5, e.g.] that proved to produce
sufficiently accurate results in practical rolling situations [6, 7]. This ap-
proach, combined with widely used classical plain strain model by Ford and
Bland [8] and well-known Hitchcock formula [9] for a deformed radius of the
roll, has the following structure

f(h2, p)[(1− σ2)γ1(φn, h2, p) + (1− σ1)γ2(φn, h2, p)] = p , (1)

(1− σ2)γ3(φn, h2, p)− (1− σ1)γ4(φn, h2, p) = 0 , (2)

where p(x) is the roll force, φn(x) is the neutral angle, x is the co-ordinate
across strip width, the functions f and γi, i = 1, 4 , depend on the properties
of the materials of the rolls and the strip. The system of non-linear algebraic
equations (1–2) is usually solved for the roll force p and the neutral angle φn,
while the longitudinal stresses at the entry and the exit σ1(x) and σ2(x) as
well as the exit strip thickness h2(x) (Figure 1) are required as an input.
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2.2 Elastic deformation of the roll stack

Half of a roll stack of a four-high mill (we assume symmetry about the strip
mid-thickness) is shown in Figure 2a. External forces acting on the system
include jack bending forces and roll force on the interface between the work
roll and the strip. In modelling the roll stack deformation we have adopted
a conventional approach [10] consisting of superposition of deformation due
to the bending of the roll axes, calculated using Timoshenko beam theory,
and the local surface flattening, which is calculated using Hertzian contact
theory. For asymmetric loading and geometry of the mill, the model was
derived in the authors’ earlier work [4]. By using Green’s function solution
for roll bending the model was reduced to a system of non-linear algebraic
and integral equations.

In [11], we discussed two alternative formulations of this model with re-
gard to the boundary conditions on the interface with rolled strip. It was
shown [11] that, given the structure of rolling model coupling, it is more
appropriate, despite the common practice, to formulate the roll stack defor-
mation model as a second fundamental boundary value problem and solve it
for variation of the roll force p̃ across the strip width using the variation of
the exit strip thickness and the mean value of the rolling force as an input,
that is

p̃(x) = p̃(h̃2(x), p̄) . (3)

We make the conventional assumption that the profile of the strip at the entry
of the roll bite conforms to the profile of the deformed work roll. Hereafter, a
tilde denotes the deviation from the mean value, while a bar denotes a mean
value.

2.3 Rolling model and its structure

A connection of the processes within the reduction mill, described in Sec-
tions 2.1 and 2.2, with the processes outside the roll bite is established by
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introducing the boundary condition of strip velocity continuity at the inter-
face between the plastic deformation region and the region outside the roll
bite in the form [1]

ṽi = ωix , i = 1, 2 , (4)

where ω1 and ω2 are the angular speeds of the strip at the entry and exit
of the roll bite, ṽ1 and ṽ2 are the deviations of the velocities of the strip
from their mean values, x is the co-ordinate across the strip width measured
from the centre of the strip. The variations of strip velocities ṽ1 and ṽ2

are expressed through the variations of the neutral angle and the exit strip
thickness using the mass conservation within the roll bite, thus providing the
coupling of equations (4) with the equations of plastic deformation of the
strip and elastic deformation of the roll stack (Sections 2.1 and 2.2).

In what follows, we call the models described in Sections 2.1 and 2.2,
together with the conditions of continuity of strip velocity (4), a “rolling
model”. This model involves several coupled models and requires iterative
solution. A model of a similar structure was analysed in the authors’ earlier
papers [11, 12]. It was found that the model can be re-formulated in a
form that makes the parts of the model only weakly coupled and therefore
an efficient numerical procedure organized. Using the arguments similar to
those in [11], the following algorithm is suggested:

1. Calculate φ̄n and p̄ using the roll bite model (1–2) and the known values
of σ̄1, σ̄2, h̄1, h̄2;

2. Calculate φ̃n and h̃2 from strip velocity continuity conditions (4) to-
gether with the condition of mass conservation in the roll bite;

3. Calculate p̃ from the model of the elastic deformation of the roll stack (3);

4. Re-formulate the model of plastic deformation (1–2) as

σi = σi(φn, h2, p) , i = 1, 2 , (5)

and solve for σ̃1, σ̃2, φ̄n and p̄.
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Figure 2: Schematics of (a) half of the rolling stack, (b) strip motion.

In principle, Steps 2–4 can be repeated till convergence is achieved. How-
ever, in our experience sufficient accuracy is obtained after the first cycle of
iterations.

The “rolling model” is used to calculate the moments of tensile stresses
acting on the strip at the entry and exit of the roll bite as functions of the
asymmetry in loading and mill geometry (including strip off-centre doc) and
the rotational speeds of the strip at the entry and exit of the roll bite

Mi = Mi(doc, ω1, ω2, asymmetry) =

∫ Ls

−Ls

σi(x)hi(x)x dx , i = 1, 2 , (6)

where Ls is half strip width. In what follows, for the sake of definiteness we
assume that ω2 = 0 .

2.4 Strip dynamics

The equations of strip motion can be written in the form [1]

dθ

dt
= ω1(doc, M1)− v̄1 κ(doc, M1)|entry , (7)

ddoc

dt
= vRθ , (8)
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where θ is the angle the strip centreline forms with the rolling direction at the
entry to the roll bite (Figure 2b), κ is the curvature of the strip centreline,
t is the time, vR is the roll speed and v̄1 is the mean speed of the strip at the
entry of the roll bite. The boundary conditions are

θ|t=0 = θ0 , doc|t=0 = d0
oc . (9)

For a strip that is free upstream, κ|entry = 0 . The rotational speed of the strip
ω1(doc, M1) can be calculated from simultaneous solution of the rolling model
(Sections 2.1–2.3) and the condition M1(doc, ω1, rolling conditions) = 0 .

2.5 Steady-state solution for strip off-centre

Consider a strip that is geometrically constrained upstream, at the distance L
from the reduction roll so that

u|z=0 =
∂u

∂z

∣∣∣∣
z=0

= 0 , (10)

where z is the axis along the rolling direction through the centre of the roll
with the origin at a distance L from the reduction roll, u is the deflection
of the strip in the x direction (positive to the right). These conditions are
the simplified representation of the constraints imposed on the strip at the
upstream tension device.

At steady-state, the equations of strip motion (7–8) can be written

ω1 = κ|z=Lv̄1 , (11)

θ =
∂u

∂z

∣∣∣∣
z=L

= 0 . (12)

Using the Bernoulli-Eulerian theory for a bending of strip centreline, the
deflections of strip centreline are described by

∂2u

∂z2
=

M1

EI
− G

EI
(L− z)− T

EI
(doc − u) , (13)
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where doc = u|z=L , T =
∫ Ls

−Ls
σ1h1 ds , I is the moment of inertia of the

cross-section, E is Young modulus. An extra boundary condition is required
to calculate the unknown lateral force G. The solution for strip off-centre
obtained by solving equation (13) with boundary conditions (10) and (12) is

doc = u|z=L =
[cosh(aL)− 1]M1/T + [sinh(aL)/a− L cosh(aL)]G/T

cosh(aL)
, (14)

where a =
√

T/EI and G = M1a sinh(aL)/(cosh(aL)− 1) . The asymptotic
expression for small α = aL (or T < EI/L2) is

doc = u|z=L = −M1L
2

6EI
(1 +O(α2)) , (15)

and is valid with sufficient accuracy for a typical operational range.

Therefore, the steady state solution for strip off-centre under the asym-
metric rolling conditions is obtained by simultaneous solution of equations (11)
and (15), where

κ|x=L =
∂2u/∂z2

[1 + (∂u/∂z)2]3/2

∣∣∣∣
x=L

=
M1

EI
, (16)

and M1 = M1(doc, ω1, asymmetry) is described by the rolling model (Sec-
tions 2.1–2.3). The steady-state solution described above is obtained under
the assumption that no buckling of the strip occurs. This assumption is
usually reasonable if the tension applied to the strip upstream is sufficiently
high. Insufficient tension results in compressive stresses acting on a part of
the strip, which could lead to strip buckling. The analysis of strip buckling
is beyond the scope of this paper, but it is useful to consider a simple model
that supposedly captures the main features of the effect of buckling on strip
tracking. Let us conjecture that the buckling makes the strip more suscepti-
ble to bending by decreasing the effective width of the strip that enters the
model through the moment of inertia of the cross-section of the strip (14–15).
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By assuming, for the sake of simplicity, that buckling occurs near the concave
outwards part of a bent strip where the entry stress is negative, the effective
width can be calculated from the rolling model (Sections 2.1–2.3) as

weff =


|(b1, Ls)| , {(b1, Ls) ⊆ (−Ls, Ls) , σ1(x)|x∈(−Ls,b1) ≤ 0

for κ|z=L > 0} ,
|(−Ls, b2)| , {(−Ls, b2) ⊆ (−Ls, Ls) , σ1(x)|x∈(b2,Ls) ≤ 0

for κ|z=L < 0} ,

(17)

and the moment of the inertia of the cross section is

I = Ieff(doc, σ̄1, ω1, asymmetry) =
1

12
h̄1w

3
eff(doc, σ̄1 , ω1, asymmetry) . (18)

3 Numerical examples and discussion

In this section, we study two scenarios:

1. the dynamics of the strip unconstrained upstream; and

2. the steady-state tracking of the strip geometrically constrained up-
stream.

The data used for the calculations are as in [4].

3.1 Dynamics of an unconstrained strip

The dynamics of the track-off for a strip unconstrained upstream (tail out
situation) is calculated using the model described in Section 2.4. It is as-
sumed that no tension is applied to the strip upstream. The off-centre of the
strip as function of time is shown in Figure 3 for two cases: a) with small



3 Numerical examples and discussion C183

Figure 3: Dynamics of strip track-off for a strip with free end (a) with initial
off-centre 0.01mm and otherwise symmetric rolling conditions and (b) under
the unequal roll forces with τ = 0.97 .

initial off-centre but otherwise symmetric rolling conditions, and b) under
the asymmetric rolling conditions, but with zero initial off-centre and entry
angle. The asymmetry in case (b) is represented by the differential roll force
acting on the roll stack, with the ratio of the forces on the right and left sides
given by τ = 0.97 .

See that even a small initial off-centre under symmetric rolling conditions
could lead to dramatic track-off if the strip is unconstrained upstream (Fig-
ure 3a). The asymmetry in the rolling conditions significantly amplifies the
rate of the track-off (Figure 3b).

3.2 Steady state solution for a constrained strip

The steady-state solution for a strip constrained upstream (Section 2.5) is
illustrated graphically in Figure 4, where the steady-state off-centre is the
horizontal coordinate of the point of intersection of the solid and dashed
lines representing the solution of the rolling model and equation (11) and the
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Figure 4: Graphical solution for the steady-state off-centre of the strip
constrained upstream at the distance 4m from the reduction roll and rolled
under the unequal roll forces with τ = 0.8 : (a) without buckling and (b) un-
der simplified buckling assumption.

solution of equations (14) or (15) respectively.

See in Figure 4a that the steady-state lateral deviation of the strip at the
entry of the roll bite under the asymmetric rolling conditions is small if the
tension applied to the strip is sufficient to prevent strip buckling. However,
the buckling of the strip, according to the simplified model in Section 2.5,
leads to a significant increase in the steady-state lateral deviation (Figure 4b).
In principle, this could lead to the situation when the steady-state solution
does not exist within the safe operational range. Thus, the importance of
the applied tension and the strip buckling for strip tracking is revealed. This
issue requires more rigorous study.

Acknowledgements: The authors thank the management of BHP Steel
Research Laboratories for permission to publish the information contained
in the paper.



3 Numerical examples and discussion C185

References

[1] H. Matsumoto and A. Ishii, Three-dimensional simulation of snake
motion in a tandem cold mill, Iron & Steel Maker, volume 30(12),
pages 31–39, 2003. C174, C178, C179

[2] T. Ishikawa, Y. Tozava and J. Nishizawa, Fundamental study on
snaking in strip rolling, Transactions ISIJ, volume 28, pages 485–500,
1988. C174

[3] A. Nilson, FE simulations of camber in hot strip rolling, Journal of
material processing technology, volumes 80–81, pages 325–329, 1998.
C174

[4] T. Tarnopolskaya, F. R. de Hoog, D. J. Gates, A. Dixon and W. Y. D.
Yuen, Analysis of strip track-off during flat rolling, Proceedings of 8th
International Rolling Conference, volume XL, Florida, pages 237–246,
2002. C174, C175, C177, C182

[5] B. Sabatini and K. Yeomans, An algebra of strip shape and its
application to mill scheduling,Journal of Iron and Steel Institute, pages
1207–1213, 1968. C176

[6] H. Matsumoto and T. Kawanami, Mechanism of material deformation
related to shape and crown phenomena, Proceedings 4th International
Steel Rolling Conference, E6.1–E6.11, 1987. C176

[7] H. Matsumoto and K. Yamada, Generalised 2-dimensional theory of
flat rolling and comparison with 3-dimensional FEM, Advanced
Technology of Plasticity, Proc. of 5th ICTP, volume I, pages 3–6, 1996.
C176

[8] H. Ford and D. R. Bland, Cold rolling with strip tension, Journal Iron
and Steel Institute, pages 57–71, 1951. C176



References C186

[9] J. H. Hitchcock, Roll-neck bearings, ASME research publications, 1935.
C176

[10] W. J. Edwards and P. D. Spooner, Analysis of strip shape. In:
Automation of tandem mills, G. F.Bryant (Ed.), pages 176–212, 1973.
C177

[11] T. Tarnopolskaya and F. de Hoog, An efficient method for strip
flatness analysis in cold rolling, Mathematical Engineering in Industry,
7(1), pages 71–95, 1998. C177, C178

[12] W. Y. D. Yuen, A. Duwal and B. Wechner, A new formulation for the
analysis of strip flatness in strip rolling, Proceedings 7th International
Conference On Steel Rolling, pages 96–301, 1998. C178


	Introduction
	Mathematical model
	Plastic deformation of the strip in the roll bite
	Elastic deformation of the roll stack
	Rolling model and its structure
	Strip dynamics
	Steady-state solution for strip off-centre

	Numerical examples and discussion
	Dynamics of an unconstrained strip
	Steady state solution for a constrained strip

	References

