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Abstract

This paper presents an iterative method to identify the diffusion
in a semi-linear parabolic problem. This method can be generalized
to other kind of problems, elliptic, parabolic and hyperbolic in two-
dimensional and three-dimensional case. The diffusion is obtained by
solving an optimal control problem. By imposing specific conditions to
the data, we build a sequence of linear problems which converge to the
exact solution. We discretize our problem by a finite element method
in the first case and a spectral method in the second case, using the
sensibility method for approximating the gradient of the functional.
Some numerical experiments prove the efficiency of this method.
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1 Introduction

In the phenomena of exchange at the sediment-water interface of the seabed
or lagoons, the concentration u(x, t) where x is the spatial coordinate system
and t is the time, is governed by the one-dimensional diffusion equation

∂u

∂t
− v

∂u

∂x
−
∂

∂x

(
D
∂u

∂x

)
= f(x, t,u),
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where D(x, t) is the diffusion coefficient that accounts both molecular diffusion
and dispersion kinetics [4] and f is the production-destruction term.

Defining QT = Ω×]0, T [ , for open interval Ω =]0, 1[ and T is a positive real
number, χT is the concentration at the time T , and v0 is the concentration at
time t = 0 . Neglecting the convective term, the problem in this paper is to
find the coefficient of diffusion D minimizing the functional

J(D) =
1

2

∫ 1
0

[u(x, T ;D) − χT (x)]
2
dx ,

where for a given D, u(x, t;D) is the solution of the problem

Find u(x, t) : QT → R , such that
∂u

∂t
−
∂

∂x

(
D
∂u

∂x

)
= f(x, t,u), (x, t) ∈ QT ,

u(x, 0) = v0(x), x ∈ Ω , (PD)
u(0, t) = u(1, t) = g(t), t ∈]0, T [ ,

where f, g and v0 > 0 are given. Thus the problem

min J(D) such that D ∈ Uad , u(x, t;D) solves (PD), (QD)

is an optimization problem.

A similar problem in linear case was first studied by Bouchiba and Abidi [3].
However, here and elsewhere the formulation that is considered in this work
deals with the nonlinear source term f. There are Several applications in
this field, discussing parabolic and hyperbolic, linear and nonlinear systems
describing numerical simulation results. These include control of distributed
parameter systems [15, 16, 17], regularization for highly ill-posed distributed
parameter estimation problems [14]. This performed numerical analysis based
on an iterative Gauss–Newton method and solved by Levenberg–Marquardt-
type method, which applied to the output least squares formulation.
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In section 2, we study after linearizing, the existence and the uniqueness of a
weak solution of the linearized problem of (Pn) for a fixed D. In section 3,
we prove the continuity of the map Φ : D → u(x, t,D). In section 4, we
establish the convergence of the sequence (un)n∈N where un is solution
of (Pn) to u solution of (PD). In section 5, we describe the optimal control
problem under constraints (PD) [10]. Indeed we prove the existence of a global
optimal solution for the optimal control problem (Q) [11, 12]. In section 6,
we give a numerical algorithm to solve (Pn) by computing the gradient of
the functional J [4], [3, linear version]. The numerical solution of the pde
system is generated by both the finite elements method [7] and the spectral
method [8, 9]. Finally in Section 7, we present a comparative study between
the two methods (finite elements method and spectral method) to see the
best convergence.

2 The linearized problems

2.1 The Assumptions

Let O be an open set of Rd, let p ∈ [1,+∞] and let k be a natural number.
Define the Sobolev space

Wk,p(O) = {u ∈ Lp(O) : ∂αu ∈ Lp(O) for all |α| 6 k} ,

where α is a multi-index, and ∂α is a partial derivative of u in the weak sense.

We suppose that the nonlinear source term f in the first equation of (PD),
satisfies the following assumptions:

f ∈ C2
(
Ω̄×]0, T [×R

)
∩W2,∞ (Ω̄×]0, T [×R

)
, (H1)

∂f

∂s
(x, t, s) 6 0, for all s ∈ R and (x, t) ∈ Ω×]0, T [ , (H2)

s 7→ f(·, ·, s) is concave on R, (H3)
f(x, t, 0) > 0 . (H4)
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2.2 Linearized problems

Using the first equation of (PD), we denote the residual

R(ψ) =
∂ψ

∂t
−
∂

∂x

(
D
∂ψ

∂x

)
− f(·, ·,ψ),

so that u is a solution of R(u) = 0 .

By applying Newton’s method linearized which has the advantage to converge
rapidly towards our solution, we build a recurrent sequence of functions (un)n
with un : QT → R , for n ∈ N ,

un = un−1 −
R(un)

R ′(un)
.

When u0 is the first term, then

∂un

∂t
−
∂

∂x

(
D
∂un

∂x

)
−
∂f

∂u
(·, ·,un−1)un = −

∂f

∂u
(·, ·,un−1)un−1+f(·, ·,un−1).

We obtain a sequence of linear problems: initially

∂u0

∂t
−
∂

∂x

(
D
∂u0

∂x

)
= k , in QT

u0(x, 0) = v0 , x ∈ Ω , (P0)
u0(0, t) = u0(1, t) = g(t), t ∈]0, T [ ,

where k = ‖f‖∞ . For n > 1 ,

∂un

∂t
−
∂

∂x

(
D
∂un

∂x

)
−
∂f

∂u
(x, t,un−1)un = F(x, t,un−1), in QT ,

un(x, 0) = v0 , x ∈ Ω , (Pn)
un(0, t) = un(1, t) = g(t), t ∈]0, T [ ,

where
F(x, t,un−1) = f(x, t,un−1) −

∂f

∂u
(x, t,un−1)un−1 .
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2.3 The variational Formulation of (Pn)

Let O be an open set of Rd and let k be a natural number. Define the Sobolev
space

Hk(O) =
{
u ∈ L2(O) : ∂αu ∈ L2(O) for all α ∈ Nd, |α| 6 k

}
For a fixed D, the variational formulation of problem (Pn) is

Find un(·, t) ∈ H1(Ω), with un(·, t) − ḡ(·, t) ∈ H1
0(Ω), such that

d

dt
(un(·, t), v) + aD(un(·, t), v) = (F(·, t,un−1), v), for all v ∈ H1

0(Ω),

un(·, 0) = v0, (PVn)

where un(·, t) : Ω→ R and ḡ(·, t) is the lifting of the boundary condition g(t)
in H1(Ω) and coincides with g(t) on {0, 1}, the boundary condition is reflected
by the fact that un(·, t) − ḡ(·, t) ∈ H1

0(Ω) [9, Proposition 1.12].

The bilinear form, for all v ∈ H1
0(Ω),

aD(un, v) =

∫ 1
0

D
∂un(·, t)
∂x

∂v

∂x
dx−

∫ 1
0

∂f

∂u
(·, t,un−1)un(·, t)v dx .

So for F(·, ·,un−1) ∈ L2 (0, T ,L2(Ω)) and ḡ(·, t) continuous in Ω̄, v0 ∈ L2(Ω)
and D ∈ L∞(QT ) such that D > α > 0 , problem (PVn) admits a unique
solution [1, 2],

un ∈ L2
(
0, T ,H1(Ω)

)
∩ C0

(
0, T ,L2(Ω)

)
.

3 Continuity of the map Φ

The following Lemma is needed to prove the continuity of the map Φ.

Lemma 1. If function u is a solution of problem (PD), then u is bounded
in L2 (0, T ,H1

0(Ω)).
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Proof: The variational formulation of problem (PD) is

Find u(·, t) ∈ H1(Ω);u(·, t) − ḡ(·, t) ∈ H1
0(Ω) such that

d

dt
(u(·, t), v) + ãD(u(·, t), v) = (f(·, t,u), v), for all v ∈ H1

0(Ω), (PVD)

u(·, 0) = v0 ,

where ãD(u(·, t), v) =
∫1
0D

∂u(·,t)
∂x

∂v
∂x
dx . We denote ū(·, t) = u(·, t) − ḡ(·, t).

Then u(·, t) is solution of problem (PVD) if and only if ū(·, t) is solution of
the problem

Find ū(·, t) ∈ H1
0(Ω) such that, for all v ∈ H1

0(Ω),

d

dt
(ū(·, t), v) + ãD(ū(·, t), v) = (f(·, t, ū+ ḡ(t)), v) − ãD(ḡ(·, t), v),

u(·, 0) = v0 . (1)

Using (1) in the particular case for v = ū(·, t) ∈ H1
0(Ω), such that D > α > 0

and the Cauchy–Schwarz inequality combined with Poincare inequality we
prove that u is bounded in L2 (0, T ,H1

0(Ω)). ♠

Let the map

Φ : L∞(Q) → L2
(
0, T ,H1

0(Ω)
)

D → u

where u is the unique solution of (PD). Let

U = {ϑ ∈ L∞(QT ) : there exists α\ϑ > α > 0}.

For D1,D2 ∈ U , D1 6= D2 , we denote ui = Φ(Di)i=1,2 and fi(x, t) =
f(x, t,ui)i=1,2 , for all (x, t) ∈ QT .

Proposition 2. The map Φ is continuous

‖ u1 − u2 ‖L2(0,T ,H1
0(Ω))6 C ‖ D1 −D2 ‖L∞(QT ), (2)

where C is a constant independent of D1 and D2.



3 Continuity of the map Φ E8

Proof: We denote ū∗ = ū1 − ū2 . Using (2), after subtracting for all
v ∈ H1

0(Ω),(
∂ū∗(·, t)
∂t

, v

)
+

∫ 1
0

(D1 −D2)
∂ū1(·, t)
∂x

∂v

∂x
dx+

∫ 1
0

D2
∂ū∗(·, t)
∂x

∂v

∂x
dx

=

∫ 1
0

(
f̄1(·, t) − f̄2(·, t)

)
v dx . (3)

In particular, equation (3) is true for v = ū∗(·, t) ∈ H1
0(Ω) and after integra-

tion between 0 and t

1

2
‖ ū∗(·, t) ‖2L2(Ω) +

∫ t
0

(∫ 1
0

D2

∣∣∣∣∂ū∗(·, t)∂x

∣∣∣∣2 dx
)
dσ

=

∫ t
0

[∫ 1
0

(
f̄1(·, t) − f̄2(·, t)

)
ū∗(·, t)dx

]
dσ

+

∫ t
0

[∫ 1
0

(D2 −D1)
∂ū1(·, t)
∂x

∂ū∗(·, t)
∂x

dx

]
dσ .

We denote

A =
1

2
‖ ū∗(·, t) ‖2L2(Ω), B =

∫ t
0

(∫ 1
0

D2

∣∣∣∣∂ū∗(·, t)∂x

∣∣∣∣2 dx
)
dσ .

Then, as D > α > 0 ,∫ t
0

(∫ 1
0

∣∣∣∣∂ū∗(·, t)∂x

∣∣∣∣2 dx
)
dσ 6

1

α

∫ t
0

[∫ 1
0

(
f̄1(·, t) − f̄2(·, t)

)
ū∗(·, t)dx

]
dσ

+
1

α

∫ t
0

[∫ 1
0

(D2 −D1)
∂ū1(·, t)
∂x

∂ū∗(·, t)
∂x

dx

]
dσ .

(4)
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And also,

1

2
‖ ū∗(·, t) ‖2L2(Ω) 6

∫ t
0

[∫ 1
0

(
f̄1(·, t) − f̄2(·, t)

)
ū∗(·, t)dx

]
dσ

+

∫ t
0

[∫ 1
0

(D2 −D1)
∂ū1(·, t)
∂x

∂ū∗(·, t)
∂x

dx

]
dσ .

The inequality (4) is true for all t ∈]0, T [ . Recall the assumption (H1) and
using Taylor’s formula, we obtain the following inequality which is related
to B defined above∥∥∥∥∂ū∗(·, t)∂x

∥∥∥∥2
L2(0,T ,L2(Ω))

6
1

α
‖D2 −D1‖L∞(QT )

∥∥∥∥∂ū1(·, t)
∂x

∥∥∥∥
L2(0,T ,L2(Ω))

∥∥∥∥∂ū∗(·, t)∂x

∥∥∥∥
L2(0,T ,L2(Ω))

+
c

α
‖D2 −D1‖L∞(QT )

‖ū∗‖L2(0,T ,L2(Ω))

By Lemma 1,∥∥∥∥∂ū∗(·, t)∂x

∥∥∥∥2
L2(0,T ,L2(Ω))

6
1

α
c1 ‖D2 −D1‖L∞(QT )

∥∥∥∥∂ū∗(·, t)∂x

∥∥∥∥
L2(0,T ,L2(Ω))

+
c

α
‖D2 −D1‖L∞(QT )

‖ū∗(·, t)‖L2(0,T ,L2(Ω)) .

We obtain∥∥∥∥∂ū∗(·, t)∂x

∥∥∥∥2
L2(0,T ,L2(Ω))

6 C0 ‖D2 −D1‖L∞(QT ) ‖ū∗(·, t)‖L2(0,T ,H1
0(Ω)) .

Similarly to (4), the following inequality in terms of the defined variable A,

1

2
‖ū∗(·, t)‖2L2(Ω) 6 C1 ‖D2 −D1‖L∞(QT )

‖ū∗(·, t)‖
L2(0,T ,H1

0(Ω)) .
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After integration between 0 and T ,

‖ū∗(·, t)‖2L2(0,T ,L2(Ω)) 6 2TC1 ‖D2 −D1‖L∞(QT ) ‖ū∗(·, t)‖L2(0,T ,H1
0(Ω)) .

We set C = 2 sup(C0, 2TC1), and conclude that

‖ū∗(·, t)‖
L2(0,T ,H1

0(Ω)) 6 C ‖D2 −D1‖L∞(QT )
,

and finally

‖u1 − u2‖L2(0,T ,H1
0(Ω)) 6 C ‖D1 −D2‖L∞(QT )

.

♠

4 The convergence

Remark 3.

• The symbol X ↪→ Y denotes the continuous and dense embedding of X
into Y.

• The symbol X⇀ Y denotes the weak convergence of X to Y.

• The symbol X→ Y denotes the strong convergence of X to Y.

Consider now the sequence (un)n∈N where un is solution of (Pn).

Proposition 4. The sequence {un}
∞
n=0 satisfies

0 < · · · 6 un+1 6 un 6 · · · 6 u0 .
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Proof:

1. We first prove that un+1 − un 6 0 . Let ω0(x, t) = u1(x, t) − u0(x, t),
for all (x, t) ∈ QT , with u0 is the solution of (P0) and u1 is the solution
of P1, (Pn) for n = 1 , then

∂u1

∂t
−
∂

∂x

(
D
∂u1

∂x

)
−
∂f

∂u
(·, ·,u0)u1 = F(·, ·,u0),

∂u0

∂t
−
∂

∂x

(
D
∂u0

∂x

)
= k .

After subtracting (P0) and P1, (Pn) for n = 1 , we get

∂ω0

∂t
−
∂

∂x

(
D
∂ω0

∂x

)
−
∂f

∂u
(·, , ,u0)ω0 = f(·, ·,u0) − k 6 0 .

Using the assumption (H2), the difference fieldω0 6 0 via the maximum
principle [1]. Subtracting Pn+1 and (Pn), setting ωn = un+1 − un ,
with un is the solution of (Pn) and un+1 is the solution of Pn+1, (Pn)
for n 7→ n+ 1 ,

∂ωn

∂t
−
∂

∂x

(
D
∂ωn

∂x

)
−
∂f

∂u
(·, ·,un)ωn = Gn ,

where via (H3), Gn = f(·, ·,un)−f(·, ·,un−1)−
∂f
∂u

(·, ·,un−1)ωn−1 6 0 .
Then, using the assumption (H2) the maximum principle gives ωn 6 0 ,
for all n > 1 .

2. We prove now that un > 0 for all n. In problem (P0), k = ‖f‖∞ > 0
and v0 > 0 by the maximum principle u0 > 0 . In problem Pn+1, (Pn)
for n 7→ n+ 1 , under assumption (H3) and (H4) F(·, ·,un) > 0 . Using
the assumption (H2) and v0 > 0 , then via the maximum principle
un > 0 for all n > 1 .

♠
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Theorem 5. The sequence (un)n∈N where un is solution of (Pn) converges
to u, where u is a solution of (PD).

Proof: By Lemma 1, un is bounded in L2 (0, T ,H1
0(Ω)) then, we can extract

a subsequence still denoted un such that

un ⇀ u in L2
(
0, T ,H1

0(Ω)
)

weakly. (5)

Using (H4), we prove that u > 0 . But it appears difficult because from (5),
it is generally not guaranteed that

∂

∂x

(
D
∂un

∂x

)
→ ∂

∂x

(
D
∂u

∂x

)
.

Then, we increase the regularity of u using the singular perturbation method.
For that we introduce a new bilinear form, continuous on H2

0(Ω),

(ϕ,ψ) 7→ b(ϕ,ψ),

such that
b(ψ,ψ) > β‖ψ‖2H2

0(Ω), for all ψ ∈ H2
0(Ω).

Using Riez’s Theorem, we represent the bilinear form b by an operator B
such that

b(ϕ,ψ) = 〈Bϕ,ψ〉H−2(Ω),H2
0(Ω) .

Similarly for the bilinear form aD: it is represented by the operator A(D)
such that

aD(ϕ,ψ) = 〈A(D)ϕ,ψ〉H−1(Ω),H1
0(Ω) .

For ε sufficiently small and positive we denote

aε,D(ϕ,ψ) = εb(ϕ,ψ) + aD(ϕ,ψ), for all ϕ,ψ ∈ H2
0(Ω).

We verify that

aε,D(ψ,ψ) > ε‖ψ‖2H2
0(Ω) + c‖ψ‖

2
H1

0(Ω),
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where c is a positive constant. The singular perturbation problem is

∂un,ε

∂t
+ (εB+A(D))un,ε = F(·, ·,un−1) in QT ,

un,ε(x, 0) = v0(x) in Ω, (Pn,ε)

where un,ε ∈ L2 (0, T ,H2
0(Ω)). The operator ∂

∂t
+(εB+A(D)) is the singular

perturbation operator of ∂
∂t

+A(D). By applying the theorem of Lions [2]
such that un,ε ∈ H2

0(Ω) and aD(un, v) is replaced by aε,D(un, v) and using
the assumption of uniform coercivity,

aε,D(ψ,ψ) > ε‖ψ‖2H2
0(Ω) + c‖ψ‖

2
H1

0(Ω), (6)

problem (Pn,ε) admits a unique solution un,ε.

Proposition 6. As ε→ 0 the following strong convergences hold:

• un,ε → u in L2 (0, T ,H1
0(Ω));

•
√
εun,ε → 0 in L2 (0, T ,H2

0(Ω));

• ∂
∂t
un,ε → ∂

∂t
u in L2

(
0, T ,H−2

0 (Ω)
)
.

Since ε is fixed positive, we deduce from (6) that

un is bounded in L2
(
0, T ,H2

0(Ω)
)

. (7)

From the first equation of (Pn,ε), we prove that

∂

∂t
un,εis bounded in L2

(
0, T ,H−2

0 (Ω)
)

. (8)

From (7), we extract a sequence, still denoted by un, such that un converge in
a weak sense to u in L2 (0, T ,H2

0(Ω)). Since the injection of H2
0(Ω) in H1

0(Ω)
is compact, there exists a subsequence, still denoted un, which converge
strongly to u in L2 (0, T ,H1

0(Ω)).
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From (8), we conclude that ∂un
∂t

converge weakly to ∂u
∂t

in L2
(
0, T ,H−2

0 (Ω)
)
,

then
D
∂un

∂x
→ D

∂u

∂x
in QT ,

in a weak sense. Indeed, for all ψ ∈ D(QT ), X = (x, t) ∈ QT ,∫
QT

D
∂un

∂x
ψdX =

∫
QT

D
∂u

∂x
ψdX+

∫
QT

D

(
∂un

∂x
−
∂u

∂x

)
ψdX .

We conclude that ∫
QT

D
∂un

∂x
ψdX→

∫
QT

D
∂u

∂x
ψdX ,

because∣∣∣∣∫
QT

D

(
∂un

∂x
−
∂u

∂x

)
ψdX

∣∣∣∣ 6 C ∥∥∥∥∂un∂x −
∂u

∂x

∥∥∥∥
L2(QT )

‖ψ‖L2(QT ),

and ∥∥∥∥∂un∂x −
∂u

∂x

∥∥∥∥
L2(QT )

→ 0 .

Since f(QT ) is C2, then

∂f

∂u
(X,un) ⇀

∂f

∂u
(X,u),

and
f(X,un−1) −

∂f

∂u
(X,un−1)un−1 ⇀ f(X,u) −

∂f

∂u
(X,u)u .

We conclude that

∂

∂t
un−

∂

∂x

(
D
∂

∂x
un

)
+
∂f

∂u
(X,un)un ⇀

∂

∂t
u−

∂

∂x

(
D
∂

∂x
u

)
+
∂f

∂u
(X,u)u ,

weakly in QT . Therefore un satisfies the two equations of (Pn,ε). ♠
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5 Optimal control

In this section we are interested by the optimal control problem under con-
straints (PD) [10]

min J(D) =
1

2

∫ 1
0

[u(x, T ;D) − χT (x)]
2
dx , such that

∂u

∂t
−
∂

∂x

(
D
∂u

∂x

)
= f(x, t,u), (x, t) ∈ QT ,

u(x, 0) = v0(x), x ∈ Ω , (Q)
u(0, t) = u(1, t) = g(t), t ∈]0, T [ ,

u ∈ C .

The set C is a closed convex subset of C0(Ω) = {ω ∈ C(Ω̄) : ω = 0 on {0, 1}},
the space of continuous functions on Ω vanishing on {0, 1}.
Remark 7. Sometimes we adopt the notation u(x, t;D) as a reminder that u
implicitly depends on D.

The set of admissible solutions is defined as

Uad = {D ∈ L∞(QT ) : u(x, t;D) satisfies the state equation in (PD)}.

The function u(x, T ;D), for all (x, t) ∈ QT , is the solution of problem (PD)
at t = T , χT is given in L2(Ω). We now prove the main result of this section.

Theorem 8. If Uad is non-empty, then there exists a global optimal solution
for the optimal control problem (Q).

Proof: Because Uad is not empty, we may take a minimizing sequence
Dn ∈ Uad . We obtain that ‖ Dn ‖∞<∞ which implies that Dn is uniformly
bounded in L∞(QT ). Then we may extract a weakly convergent subsequence,
also denoted by Dn, which converge in a weak-star sense to D̄ ∈ L∞(QT ).
And we denote un(x, t) = ū(x, t;Dn), for all (x, t) ∈ QT , by (1) and using
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Lemma 1 combined with (H1), un is uniformly bounded in H1
0(Ω). Then

we extract a weakly convergent subsequence, also denoted by un, such that
un ⇀ ū0 ∈ H1

0(Ω). In order to see that (ū0; D̄) is a solution of the (PD)
equations, the only problem is to pass to the limit in the nonlinear form
an =

∫1
0 f(·, t,un)v dx of (1). Due to the compact embedding of H1

0(Ω) into
L2(Ω) [2] and the continuity of the an, and without forgetting that an is
bounded for all x, t and un, it follows that∫ 1

0

f(·, t,un)v dx→
∫ 1
0

f(·, t,u)v dx .

Consequently, taking into account the linearity and continuity of all terms
involved, the limit (ū0; D̄) satisfies the state equations. Since C is convex
and closed, it is weakly closed, so un ⇀ ū0 ∈ H1

0(Ω) and the embedding
H1

0(Ω) ↪→ C0(Ω) imply that ū0 ∈ C . Taking into consideration that J(D) is
weakly lower semi continuous, then there exists a global optimal solution for
the optimal control problem (Q). ♠

6 The discrete problem

6.1 Finite element method

In this section, to simplify, we study the problem (PVn) in the case of
homogeneous boundary conditions (g = 0).

6.1.1 The variational Problem

We put H = L2(Ω), V = H1
0(Ω), Ω =]0, 1[ . Then V ⊂ H ⊂ V ′. We consider

the variational problem (PVn) which admits a unique solution

un ∈ L2
(
0, T ,H1

0(Ω)
)
∩ C0([0, T ],L2(Ω)).
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To build an approximation un,h of un, we choose a subspace of V composed
of affine functions over an equal number of intervals of equal size. More
precisely, let N be a natural number and h = 1

N+1
, 0 6 i 6 N + 1 . We

denote xi = ih , 0 6 i 6 N + 1 , that subdivides the interval Ω̄ = [0, 1] to
N+ 1 intervals Ki = [xi, xi+1], 1 6 i 6 N , each of length h and

Vh = {v ∈ C0(Ω̄) : v(0) = v(1) = 0 , v|Ki ∈ P1 , 0 6 i 6 N},

a finite dimensional subspace of V [1].

Setting Fn−1(t) = F(·, t,un−1) , the approached problem is

Find un,h(·, t) ∈ Vh , such that for all t ∈ [0, T ],

d

dt
〈un,h(·, t), vh〉+ aD(un,h(·, t), vh) = 〈Fn−1(t), vh〉 for all vh ∈ Vh ,

un,h(·, 0) = v0,h . (PVnh)

The problem (PVnh) admits an unique solution un,h(·, t) ∈ Vh : the proof is
obtained by direct application of Lions’s Theorem [5]. We introduce the basis
(ϕi)16i6N of Vh, for 1 6 j 6 N . Then there exists uDn,0,j and uDn,j functions
of [0, T ] in R, such that, for all (x, t) ∈ QT ,

v0,h(x, t) =

N∑
j=1

uDn,0,j(t)ϕj(x), un,h(x, t) =

N∑
j=1

uDn,j(t)ϕj(x).

Then problem (PVnh) is equivalent to the differential system
N∑
j=1

(ϕj,ϕi)
d

dt
uDn,j(t) +

N∑
j=1

aD(ϕj,ϕi)u
D
n,j(t) = Fn−1,i(t), 1 6 i 6 N ,

uDn,i(0) = u
D
n,0,i, 1 6 i 6 N , (S1)

where Fn−1,i(t) = (Fn−1(t),ϕi). We denote

RD(t) = (aD(ϕj,ϕi))16i,j6N the stiffness matrix,

M = (ϕj,ϕi)16i,j6N the mass matrix,

u∗Dn (t) = (uDn,1(t),u
D
n,2(t), . . . ,uDn,N(t))

T , and

Fn−1(t) = (Fn−1,1(t), Fn−1,2(t), . . . , Fn−1,N(t))
T .
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The system (S1) is written as

M
d

dt
u∗Dn (t) + RD(t)u

∗D
n (t) = Fn−1(t),

u∗Dn (0) = uDn,0 . (S2)

A simple calculation gives the elements of M as

(ϕi,ϕi) =
2h

3
, 1 6 i 6 N ,

(ϕi,ϕi+1) =
h

6
,

(ϕi+1,ϕi) =
h

6
, 1 6 i 6 N ,

(ϕi,ϕj) = 0 , |i− j| > 1 .

We put

Di+ 1
2
=

∫xi+1

xi

D(t)dx .

Setting Kn−1(t) =
∫1
0
∂f
∂u

(·, t,un−1)un(·, t)v dx , then

K−
n−1,i+ 1

2
=

∫xi+1

xi

Kn−1(t)(xi+1 − x)
2 dx ,

K+
n−1,i− 1

2
=

∫xi
xi−1

Kn−1(t)(x− xi−1)
2 dx ,

Kn−1,i+ 1
2
=

∫xi+1

xi

Kn−1(t)(xi+1 − x)(x− xi)dx .

We obtain for the coefficients of RD:

aD(ϕi,ϕi) =
1

h2
(Di+ 1

2
+Di− 1

2
+ K−

n−1,i+ 1
2
+ K+

n−1,i− 1
2
), 1 6 i 6 N ,

aD(ϕi+1,ϕi) = −
1

h2
(Di+ 1

2
+ Kn−1,i+ 1

2
),

aD(ϕi,ϕi+1) = −
1

h2
(Di+ 1

2
+ Kn−1,i+ 1

2
), 1 6 i 6 N− 1 ,

aD(ϕi,ϕj) = 0 , |i− j| > 1 . (9)
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Using the modified Euler method of integration,∫ 1
0

Kn−1(t)ϕ
2
i dx =

1

h2

(
K+
n−1,i− 1

2
+ K−

n−1,i+ 1
2

)
=

2h

3

∂f

∂u

(
xi−1 + h, t,uDn−1,i

)
+
∂f

∂u

(
xi+1 + h, t,uDn−1,i+2

)
+
h

6

∂f

∂u

(
xi−1 +

h

2
, t,
uDn−1,i−1 + u

D
n−1,i

2

)

+
∂f

∂u

(
xi+1 +

h

2
, t,
uDn−1,i+1 + u

D
n−1,i+2

2

)
, (10)

and ∫ 1
0

Kn−1(t)ϕiϕi+1 dx =
h

24

∂f

∂u

(
xi +

h

2
, t,
uDn−1,i + u

D
n−1,i+1

2

)
. (11)

The system (S2) is solved using a fourth order Runge–Kutta method.

6.1.2 Calculating the gradient of Jn

Consider the problem

min Jn(D), D ∈ Uad, un(·, .;D) solves (Pn), (Qn)

where we define the functional

Jn(D) =
1

2

∫ 1
0

[un(x, T ;D) − χT ,n(x)]
2
dx . (12)

As χT ,n =
∑N
i=1 χn,T (xi)ϕi , we write

Jn(D) =
1

2

∫ 1
0

[
N∑
i=1

(
uDn,i(T) − χn,T (xi)

)
ϕi(x)

]2
dx . (13)
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Expand the expression of J,

Jn(D) =
h

3

N∑
i=1

(
uDn,i(T) − χn,T (xi)

)2
+
h

6

N−1∑
i=1

(
uDn,i+1(T) − χn,T (xi+1)

) (
uDn,i(T) − χn,T (xi)

)
.

To calculate an approximation of the gradient J, we consider a mesh of the
rectangle Ω̄× [0, T ] by triangles Tij with vertices

(ih, jδt), ((i+ 1)h, jδt), (ih, (j+ 1)δt),

and T ′ij with vertices

(ih, (j+ 1)δt), (ih, (j+ 1)δt), ((i+ 1)h, jδt),

where δt = T
M+1

is a time step. There Di,j ≈ D(ih, jδt).

And we denote λi respectively (λ ′i), i = 1, 2, 3 , the barycentric coordinates of
a point from the triangle Tij, respectively T ′ij,

Dij|Tij = λ1Dij + λ2Di+1,j + λ3Di,j+1 ,

Dij|T ′ij = λ
′
1Di+1,j + λ

′
2Di,j+1 + λ

′
3Di+1,j .

A simple calculation gives

λ ′1(x, t) =
x

h
+
t

∆t
− (i+ j+ 1) = −λ1(x, t),

λ ′2(x, t) = −
x

h
+ i+ 1 = −(λ2(x, t) − 1),

λ ′3(x, t) = −
t

∆t
+ j+ 1 = −(λ3(x, t) − 1).

The calculation of Di+ 1
2
is more delicate when x varies between xi and xi+1

and t between jδt and (j+ 1)δt the point (x, t) ∈ Tij ∪ T ′ij so

if x ∈ [xi, xi + a(t)] then (x, t) ∈ Ti ,

if x ∈ [xi + a(t), xi] then (x, t) ∈ T ′i .
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Figure 1: Mesh

where a(t) = h(1 − s− j) (see Figure 1), with s = t/δt so

Di+ 1
2
=
h

2
[αj(t)Dij + βj(t)Di+1,j + γj(t)Di,j+1 + δj(t)Di+1,j+1] , (14)

with αj(t) = (1+j−s)2, βj(t) = (1+j−s)(1−j+s), γj(t) = (s−j)(2+j−s),
and δj(t) = (s− j)2. Thus, knowledge of Dij, 0 6 i 6 N+ 1 , 0 6 j 6M+ 1 ,
approach D(x, t) on QT and consequently reduce the problem of minimization
in finite dimensions: D will equate to a vector Rk where k = (N+ 2)(M+ 2).
We denote

D = (D00, . . . ,D(N+1)0,D01, . . . ,D(N+1)1, . . . ,D0(M+1), . . . ,D(N+1)(M+1))
T .

The problem (Qn) becomes

min Jn(D), D ∈ Rk, D > α > 0 . (Qnh)
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Then we obtain

∇Jn(D) =

(
∂Jn

∂D00

,
∂Jn

∂D01

, . . . ,
∂Jn

∂D0(N+1)

, . . . ,
∂Jn

∂D(N+1)(M+1)

)T
.

As
∂Jn

∂Dij
=

N∑
k=1

∂Jn

∂uDn,k

∂uDn,k

∂Dij
(t),

and
∂u∗Dn
∂Dij

(t) =

(
∂uDn,1

∂Dij
,
∂uDn,2

∂Dij
, . . . ,

∂uDn,N

∂Dij

)T
.

The expression (13) gives

∂Jn

∂un,k
=

2

3
h
[
uDk,n(T) − χT ,n(xk)

]
+
h

6

[
uDk−1,n(T) − χT ,n(xk−1)

]
+
h

6
uDk+1,n(T) − χT ,n(xk+1).

Knowing that χT (x0) = χT (xN+1) = 0 and uD0 = uDN+1 = 0 , to calculate
∂Jn
∂Dij

, we assume

vij(t) =
∂u∗Dn
∂Dij

(t) =

(
∂uDn,1

∂Dij
,
∂uDn,2

∂Dij
, . . . ,

∂uDn,N

∂Dij

)T
.

Then
∂vij

∂t
=

∂

∂Dij

(
∂u∗Dn
∂t

)
.

By using (S2), it follows

∂vij

∂t
= −M−1 ∂RD

∂Dij
u∗Dn (t) −M−1RD(t)

∂u∗Dn
∂Dij

(t).
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To calculate (vij), it suffices to solve the following system, using the fourth-
order Runge–Kutta method,

∂vij

∂t
= −M−1 ∂RD

∂Dij
u∗Dn (t) −M−1RD(t)vij , vij(0) = 0 .

The matrix coefficients RD(t) and
∂RD(t)
∂Dij

are calculated using (10).

6.2 Spectral discretization of the problem (PVn)

In this section we recall some formulas in the spectral method in a reference
field Λ =]−1, 1[ , then we use these results to write the variational formulation
in our field of study Ω.

Let N be an integer > 2 . Denote the space PN(Λ) of polynomials with
degree 6 N and the space P0

N(Λ) of polynomials in PN(Λ) vanishing on the
boundary of Λ [8, 9]. We introduce the space PN(−1, 1) of restrictions to Λ
of polynomials with degree 6 N . Setting ξ0 = −1 and ξN = 1 , we introduce
the N− 1 nodes ξj, 1 6 j 6 N− 1 , and the N+ 1 weights ρj, 0 6 j 6 N , of
the Gauss–Lobatto quadrature formula, recall that∫ 1

−1

φ(ζ)dζ =

N∑
j=0

φ(ξj)ρj . (15)

We also recall [6, (13.20)] the following property, which is useful in what
follows:

for all ϕN ∈ PN(−1, 1), ‖ϕN‖2L2(Λ) 6
N∑
j=0

ϕ2
N(ζ)ρj 6 3‖ϕN‖2L2(Λ). (16)

Relying on this formula, we introduce the discrete product [8, 9] defined on
continuous functions u and v by

(u, v) =

N∑
j=0

u(ξj)v(ξj)ρj . (17)
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It follows from (16) that this discrete product is a scalar product on PN(Λ).
Let finally IN denote the Lagrange interpolation operator at the nodes ξi,
0 6 i 6 N , with values in PN(Λ).

We now assume that the function Fn−1(t) is continuous on Ω̄. Thus the dis-
crete problem is constructed from (PVn) using the Galerkin method combined
with numerical integration. It reads

Find un,N(·, t) ∈ PN(Ω), with un,N(·, t) − INḡ(·, t) ∈ P0
N(Ω),

such that for all vN ∈ P0
N(Ω)

d

dt
(un,N(·, t), vN)N + aD,N(un,N(·, t), vN) = (Fn−1(t), vN)N ,

un,N(·, 0) = v0,N , (18)

where the bilinear form

aD,N(un,N, vN) =

(
DN

∂un,N(·, t)
∂x

,
∂vN

∂x

)
N

. (19)

It follows from (PVn), combined with Cauchy–Schwarz inequalities, that
the form aD,N is continuous on P0

N(Ω)× P0
N(Ω), with norm bounded inde-

pendently of N. Then to investigate the well-posedness of the problem we
use Lions’s theorem [2, 5]. To simplify the problem, we suppose that we
know the values of Fn−1(t) at the nodes of Ω. Let `i be Lagrange polyno-
mials at the nodes ξ̃i, 0 6 i 6 N [6, Remark 1.5]. Then we calculate the
coordinates un,i(t) of solution un,N(·, t) in the base `i, for each t in [0, T ]. So

un,N(x, t) =

N∑
i=0

un,i(t)`i(x).

We note
vN = `r, 1 6 r 6 N− 1 ,

and

DN (x, t) =

N∑
m=0

N∑
p=0

Dmp`m (x) `p (t) .
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The variational problem (18)

N∑
i=0

(`i, `r)
∂

dt
un,i(t) +

N∑
i=0

aD,N(`i, `r)un,i(t) = Fn−1(t)(ξ̃r)ρr , (20)

un,i(0) = v0,i , (21)

where un,i(t) are the values of un,N(t) at the nodes ξ̃i of the Gauss–Lobatto
in Ω. We obtain N− 1 equations with N− 1 unknowns. So (19) is equivalent
to the linear system

M
d

dt
u∗Dn (t) + RD(t)u

∗D
n (t) = Fn−1(t),

u∗Dn (0) = ṽ0 , (22)

where u∗Dn (t) is the vector of coordinates un,i(t), 1 6 i 6 N− 1 . M is the
mass matrix, RD(t) is the stiffness matrix. Fn−1(t) is the vector of coordinates

1

2

(
f(ξ̃r, t,un−1(ξ̃r, t)) −

∂f

∂s
(ξ̃r, t,un−1(ξ̃r, t))un−1(ξ̃r)

)
ρr

− aD,n(`0, `r)un(ξ̃0, t) + aD,n(`N, `r)un(ξ̃N, t), 1 6 r 6 N− 1 .

ṽ0 is constituted with the values v0,i, 1 6 i 6 N− 1 , at the nodes ξ̃i of the
Gauss–Lobatto in Ω. The coefficients of M are written as [13, Appendix]

(`i, `r) =

{
0 if 0 6 i < r 6 N ,

2
N(N+1)L2N(ξ̃i)

if 1 6 i = r 6 N− 1 .

And the coefficients of RD(t) are

aD,N(`i, `r) = 2

N∑
p=0

¯̀
p(t)

N∑
k=0

Dkp`
′
i(ξ̃k)`

′
r(ξ̃k)ρk

−
1

2

∂f

∂s
(ξ̃r, t,un−1(ξ̃r, t))δirρr .
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6.2.1 Calculating the gradient of Jn

Consider the problem (Qn) as

un,N (t) (x) =

N∑
j=0

uDn,j`j(x), χT (x) =

N∑
i=0

χT ,i`i(x),

and setting uDn
(
ξ̃k
)
(T) = uDn,k(T), it follows

Jn(D) =

N∑
k=0

[
uDn,k(T) − χT (ξ̃k)

]2
ρk . (23)

To calculate an approximation of the gradient Jn (12), we consider a mesh of
rectangle Ω̄× [0, T ]. Then

∂Jn(D)

∂Dmp
=

N∑
k=0

∂Jn(D)

∂uDn,k

∂uDn,k

∂Dmp
.

We then observe that, via (23),

∂Jn(D)

∂un,k
= 2(uDn,k(T) − χT ,k)ρk .

And then find

∂u∗Dn (t)

∂Dmp
=

(
∂uDn,1(t)

∂Dmp
, . . . ,

∂uDn,N−1(t)

∂Dmp

)
,

we assume vm,p(t) =
∂u∗Dn (t)
∂Dmp

, and using (22) gives

∂vm,p

∂t
= −M−1∂(RDu

∗D
n (t))

∂Dmp
, vm,p (0) = 0 . (24)
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To solve (24),

RDu
∗D
n = 2

N∑
m=0

N∑
p=0

Dmp

(
N∑
i=0

N∑
j=0

uij`
′
i(ξ̃m)

¯̀
j(t)

)
` ′r(ξ̃m)

¯̀
p (t) ρm ,

and finally

∂RDu
∗D
n (t)

∂Dmp
= 2

(
N∑
i=0

N∑
j=0

uij`
′
i(ξ̃m)

¯̀
j(t)

)
` ′r(ξ̃m)

¯̀
p (t) ρm .

7 Some numerical experiments

In this section we present some numerical experiments using matlab as
a computational tool. The algorithm of resolution of the problem (Q), is
divided into two parts.

• Firstly we solve the problem (PVn), in the matrix form (S2) and (22)
in both methods. The resolution of U1 is done knowing D0 = D(·, 0).
The method used is a fourth order Runge–Kutta.

• Secondly, once U1 is calculated, it is then introduced in the minimization
problem (QD) to recover D1. The best method used in our case is a
Levenberg–Marquardt method based on the calculation of gradient
of J(D) detailed in subsections 6.1.2 and 6.2.1. We continue this process
until we get the desired convergence.

The algorithm requires about 7% of total time for calculating the solution u
and 93% to calculate D. Runge–Kutta is used three times in the program.
In the Levenberg–Marquardt algorithm, the iteration number to achieve
maximum convergence of D varies somewhat as function of N, and it does
not exceed five iterations. We need also just a few iterations to assure the
convergence of the global system. Table 1 reports the average cpu time (in



7 Some numerical experiments E28

Table 1: The cpu time in seconds required for one iteration of Runge–Kutta.

N fem1 fem2 sp.m
8 0.01 0.1 1

12 0.01 0.2 2
16 0.02 0.4 3
20 0.02 0.5 4
24 0.03 0.7 8
28 0.03 0.9 13
32 0.03 1.1 24
36 0.03 1.3 53

seconds) required for one iteration of Runge–Kutta using the three methods
with N varying between 8 and 36.

We use the bicgstabl method (gmres method is also a suitable alternative).
Several preconditioners can be found in literature. In our case a preconditioner
performing an incomplete lu factorization is the best appropriate to be used
for all three methods. The convergence is assured in four iterations at most.
Without using any preconditioner the number of iterations increases as a
function of N. For example by fixing a tolerance 10−6 the iteration number
exceeds ten for N greater than 30. Without loss of generality, we consider
the domain of study Q̄T . Numerically we prove the convergence of the same
problem in a more general case taking u(0, t) = g1(t) and u(1, t) = g2(t)
where g1 and g2 are given. We present a complete study of the problem,
using finite element method (explained in subsection 6.1). We give in this
method two different approaches. In the first approach (fem1) we use
the trapezoidal formula for approximating integrals. Regarding the second
approach (fem2) we employ the Gauss–Lobatto formula. Finally, we present
a spectral method (sp.m), with a comparative study for each test case.
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1. We consider the following analytical functions:

u(x, t) = (x2 + 2)(t+ 1), D(x, t) =
1

24
(x+ 1)(t+ 1), (25)

f(x, t) = −s(x, t)u2 + h(x, t), with s(x, t) = (t2 + 1)ex,

and h(x, t) verifies the equation (PD).

Figures 2 and 3 plot the two quantities log10(‖u− uN‖L2(Ω)) and
log10(‖D−DN‖L2(Ω)) as functions of log10(δt). We apply this for both
the methods. In all these calculations we take T = 0.1 and N = 30 .

2. We consider the following functions:

u(x, t) = et(x+ 1), D(x, t) =
1

2
e−t(x2 + 1), (26)

f(x, t) = −s(x, t)u2 + h(x, t), with s(x, t) = tx2,
and h(x, t) verifies the equation (PD).

Figures 4 and 5 plot the two quantities log10(‖u− uN‖L2(Ω)) and
log10(‖D−DN‖L2(Ω)) as functions of log10(δt). We apply this for
both the methods. All these calculations are made by fixing T = 0.1
and N = 35 . In both the cases (first test and second test) presented,
we find that the spectral method is more precise than finite elements
method. The slope of the curve estimations in approach 2 (finite element
method) and the spectral method proves the good convergence in time
of the solutions u and D. While in approach 1 (finite element method)
the slopes of the curve estimations decreases very slowly with time, this
result is due to the poor convergence space stops the evolution in time
of errors.

3. For the same example as the first case, Table 2 presents the error |u−uN|
and Figure 6 the approached solution uN for times t varying between 0
and 1 in the nodes ξi, i = 1, . . . , 8 . The results are for T = 1 , δt = 10−3

and N = 8 .
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Figure 2: L2 error between the exact solution u given in the first test and the
experimental solution uN using the three approaches.
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Figure 3: L2 error between the exact solution D given in the first test and
the experimental solution DN.
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Figure 4: L2 error between the exact solution u given in the second test and
the experimental solution uN.

−4 −3.5 −3 −2.5 −2 −1.5 −1
−15

−10

−5

0

log
10

(δt)

lo
g

1
0
||
u
−

u
N

||
L

2
(Ω

)  

 

 

f.e.m.1

f.e.m.2 

sp.m.

Figure 5: L2 error between the exact solution D given in the second test and
the experimental solution DN.
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Table 2: The values |u(ξi, .) − uN(ξi, .)| in the third test calculated at the
nodes ξi for different values of t, with N = 8 and T = 1 .

t ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8
0 0 0 0 0 0 0 0 0

0.1 1e−13 1e−13 1e−12 7e−12 5e−12 1e−11 2e−11 3e−11
0.2 1e−13 1e−12 2e−12 7e−12 2e−11 5e−11 1e−10 1e−10
0.3 1e−12 2e−12 6e−12 1e−11 5e−11 1e−10 2e−10 3e−10
0.4 1e−12 4e−12 1e−11 3e−11 1e−10 2e−10 5e−10 6e−10
0.5 2e−12 7e−12 2e−11 5e−11 1e−10 4e−10 9e−10 1e−9
0.6 4e−12 1e−11 3e−11 1e−10 2e−10 6e−10 1e−9 1e−9
0.7 6e−12 1e−11 5e−11 1e−10 4e−10 1e−9 2e−9 2e−9
0.8 9e−12 2e−11 8e−11 2e−10 5e−10 1e−9 2e−9 3e−9
0.9 1e−11 4e−11 1e−10 3e−10 8e−10 1e−9 3e−9 4e−9
1 2e−11 6e−11 1e−10 4e−10 1e−9 2e−9 4e−9 5e−9

4. We study the convergence of solutions depending on the parameter n.
Figures 7 and 8 show the evolution of curves as a function of N; N vary-
ing between 6 and 24. We take T = 0.1 and δt = 10−2, and the exact
solutions are

u(x, t) = (t+ 1)(x2 + 1)1/2 D(x, t) =
0.25

1 + t
(x2 + 1)3/2, (27)

f(x, t) = −s(x, t)u4 + h(x, t), with s(x, t) = et
2+1(x2 + 1),

and h(x, t) verifies the equation (PD).

In this case u is a singular function. The maximum error of the solutions
is reached at N = 24 in approach 1 and 2 of finite element methods,
and at N = 14 in the spectral method. Knowing that, if we take u as a
polynomial function, then the maximum is reached from N = 4 for the
two methods.
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Figure 6: The curves of uN(ξi, t) as a function of t, calculated in the third
test at the nodes ξi with N = 8 , T = 1 and δt = 10−3.
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5. In this test, we take

f(x, t) = −(
u

(x+ 1)(t+ 1)
)2 + x+ 10−5, u(x, 0) = x+ 1, (28)

g(t) =

{
(t+ 1) on {0}× Ω̄ ,

2(t+ 1) on {1}× Ω̄ ,
(29)

D(x, 0) = x+ 1 .

The solution in this case is unknown. The calculations done with the
second approach (finite element methods) and spectral method are
presented in Figures 9 and 10. Figures 9 and 10 are almost identical,
this proves the good convergence of the two algorithms.



7 Some numerical experiments E34

Figure 7: L2 error between the exact solution u given in the fourth test and
the experimental solution uN.

6 8 10 12 14 16 18 20 22 24
−10

−8

−6

−4

−2

0

  N

lo
g

1
0
||
u
−

u
N

||
L

2
(Ω

)

 

 
 f.e.m.1

 f.e.m.2

 sp.m.

Figure 8: L2 error between the exact solution D given in the fourth test and
the experimental solution DN.
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Figure 9: The discrete solution uN and DN using spectral method with data f
and g given in the fifth test.
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Conclusion The selection of the two algorithms introduced in the paper
gives a good and stable numerical convergence of the two methods. The
results of the numerical simulations that we performed confirm all theoretical
results found.
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