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Abstract

A boundary value formulation of an Asian option is solved with
a wide range of standard textbook explicit finite difference methods
including also artificial diffusion methods. We investigate the depen-
dence of the numerical methods on the various degeneracies and ap-
proximations in the boundary value formulation. It is concluded that
numerical solutions are generally oscillatory, that a simple artificial
diffusion approach does not resolve this problem, but that by select-
ing the appropriate methods, oscillations can be avoided.
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1 The boundary value problem for Asian

options

Most financial instruments (like contingent claims) are modelled within the
framework of stochastics but have equivalent analytical formulations in the
form of boundary value problems (bvp’s) for partial differential equations.

For European options with many factors (more than 3), stochastic meth-
ods like Monte Carlo simulation may be the most competitive but for the
more advanced options traded today and the more advanced numerical meth-
ods available the bvp formulations merits interest. For example this is the
case for the Asian options considered in this paper.

We consider the Black-Scholes model of the reversed time formulation
of a zero dividend, fixed strike Asian average value call option, where the
terminal payoff depends on the path, that is, the past history of the risky
asset, through the continuous arithmetic running sum (integral of the risky
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asset price over the entire lifetime of the option):

Find V : (S, A, τ) ∈ Ω̄ → R , V ∈ C0(Ω̄) ∩ C∞(Ω∞) with (1)

Ω = (0, Smax)× (0, Amax)× (0, T ) ,

Ω∞ = (0,∞)× (0,∞)× (0, T ) ,

∂V

∂τ
=

σ2

2
S2∂2V

∂S2
+ rS

∂V

∂S
+ S

∂V

∂A
− rV for (S, A, τ) ∈ Ω ,

V (S, A, 0) = max

{
A

T
−K, 0

}
,

V (0, A, τ) = e−rτ max

{
A

T
−K, 0

}
,

V (S, A, τ) =

(
A

T
−K

)
e−rτ +

S

rT
(1− e−rτ ) , for A ≥ KT ,

V (Smax, A, τ) ' max

{(
A

T
−K

)
e−rτ +

Smax

rT
(1− e−rτ ), 0

}
.

See [1] and [2] for the derivation. The last boundary condition is exact only in
the limit Smax →∞ . For notation, t is time while τ = T − t is reversed time.
The option is priced at time t = 0 or τ = T and expires at the terminal time
t = T or τ = 0 . The constants r, σ > 0 and K > 0 are the risk free market
interest rate, volatility and the terminal exercise price respectively. Smax and
Amax in the bounds of Ω constitute artificial limitations on the computational
domain to facilitate numerical solution of the problem originally posed on the
infinite domain Ω∞. V , S and A are option price, risky asset price and risky
asset price running sum (A(t) =

∫ t

0
S(u)du) respectively.

For σ = 0 the risky asset behaves deterministically, and it is easy to
explicitly derive the financial solution

V0(S, A, τ) = max

{(
A

T
−K

)
e−rτ +

S

rT
(1− e−rτ ) , 0

}
. (2)

See Theorem 2 in [2] for a proof.
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We chose to consider zero dividend and continuous average in order to not
complicate the situation with discontinuities, apart from the ones otherwise
provided by the problem itself, even though especially the discrete averages
has attracted some attention in the last few years, see for example [3, 4, 5].
Further, we chose to consider a fixed strike (instead of a floating) and an
arithmetic average (instead of a geometric) since these are the predominant
in the market according to [6]. Finally, we quite arbitrarily chose a zero-
starting call option: A put option can be computed with a put call parity,
see for example the corollary to Proposition 1 in [6], and general forward-
and backward-starting options may be computed with methods similar to
the ones presented here.

The bvp is a so-called degenerate parabolic problem with several degen-
eracies for which no closed form solutions are available. It is well known [7,
e.g.] that such problems are not well adapted to solution with simple text-
book numerical methods like standard explicit or implicit finite difference
or uniform mesh finite element methods since such methods will generate
spurious oscillations. Artificial viscosity may be useful in limiting the oscil-
lations but the most successful methods combine this with nonuniform grids
like in mesh adaptive finite element (or volume) methods as in [8]. For more
literature see the extensive list of references in this paper.

Instead it has, to our knowledge, not been addressed previously in the
literature exactly which of the various degenerations are dominating and
neither exactly how bad the simple textbook methods actually behave. These
are the two research questions that we set out to investigate in this article.
For both questions we utilize exactly the simple text book numerical methods
(see Section 2) that are known to not function optimally. That way we will be
able to understand in what sense they do not perform and their performance
will also reveal the degeneracies that are dominating the picture.

We focus on explicit finite difference methods since these are the methods
that are generally attempted as a first try and since they present a significant
computational cost advantage over implicit methods. (Note that we are
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dealing with 3 dimensional problems). It is possible to transform the problem
from 3 dimensions to 2 [6] but this will likely obscure the influence of the
various degeneracies so we do not consider that option here. The goal is
not as much to solve the Asian option as it is to investigate the solutions
presented by others.

2 Simple textbook finite difference methods

We consider what we shall call simple textbook finite difference methods
for (1). We shall only consider the case σ > 0 since we have a closed form
solution for the no volatility case σ = 0 in (2).

In [2] the differential operator in (1) is studied. It is found to be hy-
poelliptic (for smooth data), which guarantees smooth solutions. Further it
has degenerated elliptic S and A parts. The degeneration in the S variable
comes from the fact that the coefficient 1

2
σ2S2 of ∂2V /∂S2 takes the value 0

at the left boundary of Ω, that is, for S = 0 . Such a degeneracy could
be expected to generate oscillations in numerical solutions which might be
avoided by adding some (non negative) amount ν2

S of artificial viscosity, re-
placing the coefficient by 1

2
σ2(S +νS)2 , or alternatively by 1

2
σ2(S2 +ν2

S) , but
this latter will not necessarily preserve the hypoellipticity of the differential
operator and hence should not be chosen. Adding artificial viscosity generally
smoothens out a numerical solution, but also decreases the precision since we
are now considering a different problem. The art is to add exactly the right
amount to avoid the oscillations but to not deteriorate the solution too much.
The degeneration in the A variable is global since there is no ∂2V /∂A2 term
at all in the differential equation. The solution is similar, adding a non neg-
ative artificial viscosity ν2

A ending up with a term ν2
A∂2V /∂A2 . An artificial

viscosity numerical method for (1) will then take its origin in the differential
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equation

∂V

∂τ
=

σ2

2
(S + νS)2∂2V

∂S2
+ rS

∂V

∂S
+ ν2

A

∂2V

∂A2
+ S

∂V

∂A
− rV . (3)

In the most general case, νS and νA depend on S, A and τ , while selecting
νS = νA = 0 we return to the standard case without artificial viscosity.
Our simple textbook finite difference methods for (1) then consist in the
replacement of the various differential operators in (3) by finite difference
operators on a uniform mesh with step lengths hS, hA and hτ in the S, A
and τ directions respectively and the consideration of the resulting equation
and also the boundary conditions in (1) in the nodal points of the mesh.
To qualify as a simple method, we shall allow νS to depend on hS and νA to
depend on hA. Instead they must be independent of S, A and τ . Our general
finite difference method then takes the form

Find Uk
ij for i = 0, . . . , NS , j = nA, . . . , NA , k = 0, . . . , Nτ : (4)

(Uτ )
k
ij =

σ2

2
(ihS + νS)2(USS)k

ij + rihS(US)k
ij + ν2

A(UAA)k
ij

+ ihS(UA)k
ij − rUk

ij

for i = 1, . . . , NS −MS , j = nA + mA, . . . , NA −MA , k = 0, . . . , Nτ − 1 ,

∂Ω|τ=0 : U0
ij = max

{
jhA

T
−K, 0

}
, for i = 0, . . . , NS , j = nA, . . . , NA ,

∂Ω|A=Amax : Uk
ij =

(
jhA

T
−K

)
e−rkhτ +

ihS

rT
(1− e−rkhτ ) ,

for i = 0, . . . , NS , j = NA −MA + 1, . . . , NA , k = 1, . . . , Nτ ,

∂Ω|S=0 : Uk
0j = e−rjhτ max

{
jhA

T
−K, 0

}
,

for j = nA, . . . , NA −MA , k = 1, . . . , Nτ ,

∂Ω|S=Smax : Uk
i,j = max

{(
jhA

T
−K

)
e−rkhτ +

ihS

rT
(1− e−rkhτ ), 0

}
,

for i = NS −MS + 1, . . . , NS , j = nA, . . . , NA −MA , k = 1, . . . , Nτ .
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We are using Uk
ij as our approximation to V (ihS, jhA, khτ ) . Also Uτ , US,

USS, UA and UAA are finite difference approximations to the corresponding
derivatives, to be described below. MS and MA are the number of boundary
conditions used at (and below) S = NShS = Smax and A = NAhA = Amax

respectively. Finally Nτhτ = T . Note that the A indexing variable j is
allowed to descend down to a non positive number nA to allow an extension
of Ω in the negative A direction down to Amin = nAhA ≤ 0 . This will be
utilized below.

For finite difference operators we shall consider 16 classical forward, back-
ward and central types of consistency order 1, 2 and 4 for both the first and
second derivatives. (The first order central operators do not exist and are
omitted). This selection makes (4) consistent with (1) provided only that
νS → 0 as hS → 0 and νA → 0 as hA → 0 . The difference operators are
derived by simple Taylor expansion and we give here only one illustrative
example:

δ2
F4f(x) =

1

12h2

{
45f(x)− 154f(x + h) + 214f(x + 2h) (5)

− 156f(x + 3h) + 61f(x + 4h)− 10f(x + 5h)
}

= f ′′(x) +Oh→0(h
4) .

We use the notation δj
F i, for i = 1, 2, 4 and j = 1, 2 for a forward difference

operator of order i for the jth derivative. δj
Bi and δj

Ci are given along the
same lines, only backward and central respectively. When considering par-
tial derivatives, we shall indicate the derivatives with a second lower index
consisting of the variable names as for example in USS = δ2

F1,SSU . Note
that there are no mixed derivatives in our problem so that one dimensional
difference operators are all that is needed. We shall use a notation illustrated
by the following example to clarify what difference operators have been used
for what derivatives: The numerical method F1τ −B1C2S − F1B4A is the
one where we made the following choices in (4): Uτ = δ1

F1,τU , US = δ1
B1,SU ,

USS = δ2
C2,SSU , UA = δ1

F1,AU and UAA = δ2
B4,AAU . The resulting difference
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equations are hence

δ1
F1,τU

k
ij =

σ2

2
(ihS + νS)2δ2

C2,SSUk
ij + rihSδ1

B1,SUk
ij (6)

+ ν2
Aδ2

B4,AAUk
ij + ihSδ1

F1,AUk
ij − rUk

ij .

The naming system should be clear from this example.

The available boundary conditions prohibit quite a few of the difference
operator replacements. Take for example the left side of the boundary, S = 0 .
Here we have access to exactly one boundary condition. Hence using δ2

B1,
δ1
B2, δ2

B2, δ1
B4, δ2

B4, δ1
C4 or δ2

C4 in the S direction, all having stencils including
the points x, x−hS and h−2hS , would make it impossible to recover solution
values in all nodal points of the mesh. To recover a value at S = hS we need
for example information about the solution in S = −hS (among other) and
we do not have this information. Going through all boundaries it is clear
that only the following difference operators are feasible:

• in the τ direction, δ1
F1 and δ1

B1;

• in the S direction, δ1
F1, δ1

F2, δ1
F4, δ1

B1, δ1
C2, δ2

F1, δ2
F2, δ2

F4 and δ2
C2;

• in the A direction, δ1
F1, δ1

F2, δ1
F4, δ2

F1, δ2
F2 and δ2

F4.

The difference operators δ1
B1, δ1

C2 and δ2
C2 in the A direction require one

boundary condition in A = 0 which we do not have. We shall in any case try
out some of these cases, extending the bvp down to Amin < 0 and imposing an
artificial boundary condition in A = Amin . We experimented with 3 artificial
boundary conditions, one being V |A=Amin

= 0 , another being V |A=Amin
=

V0|A=Amin
(with V0 given by (2)) and the last one being V |A=Amin

= “whatever
comes out of the difference equations replacing the difference operators being
used in the A direction when A = Amin with δ1

F2 and δ2
F2 but leaving the

difference operators in the τ and S directions unaltered”. (For A 6= Amin the
correct difference operators are being used). We shall denote the 3 options
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Xτ−Y ZS−UV A0 , Xτ−Y ZS−UV Af (f for formula) and Xτ−Y ZS−UV Ap

(p for pde) respectively, where X, Y Z and UV stands for whatever operators
are being used for A 6= Amin .

All together there are 2850 possible methods, including the artificial vis-
cosity and the 3 different artificial boundary conditions in the A direction.
Obviously we shall not try them all out but we shall make a careful selec-
tion of the few reasonable methods. In order to reduce the computational
cost we shall restrict to explicit time stepping methods of the Type F1τ
for the τ direction. For the S and A directions where we may have both
first and second derivatives, we shall with a few exceptions only consider
methods of the same order in the two derivatives. This is to avoid need-
less waste of computation time since the highest order difference operator
will determine the computing time while the lowest order difference operator
will likely determine the precision. Furthermore, we shall as far as possible
use overlapping stencils for the difference operators for the first and sec-
ond order derivatives to limit the computational complexity of the problem.
This rules out for example the method F4B4 where the two stencils have
only one point in common (St(F4) = {x, x + h, x + 2h, x + 3h, x + 4h} and
St(B4) = {x, x − h, x − 2h, x − 3h, x − 4h, x − 5h}) . This leads to the fol-
lowing selection: for the S direction we shall consider methods of the Types
F1F1S, F2F2S, F4F4S and C2C2S. For a more thorough investigation
of the low order methods we also consider two methods where we have dif-
ferent orders in the first and second order derivatives, namely F1C2S and
B1C2S. For the A direction we shall consider methods of the types F1F1A,
F2F2A, F4F4A, C2C2A0, C2C2Af and C2C2Ap. This reduces the total
number of possible methods to a more manageable 36 while not leaving out
any “reasonable” simple textbook methods.
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3 Numerical experiments and conclusions

For the numerical experiments we consider a one year option (T = 1), with an
exercise price K = 150 , time independent squared volatility σ2 = 1% and risk
free market interest rate r = 5%. We take Smax = 1.25(300 + MShS) ' 375
where S ∈ (0, 300) is the interval where we want to recover the solution,
300 + MShS makes room for the boundary conditions to stay above S = 300
and the factor 1.25 makes some extra room considering that the boundary
condition in S = Smax is actually only valid for Smax → ∞ . Amax is given
by Amax = 4

3
(KT + MAhA) ' 200 where again KT + MAhA makes room for

the boundary conditions to stay above KT which is where they are known.
The factor 4

3
gives an overlap between the A interval and the part A ≥ KT

where the exact solution to the problem is known. This is done in order to
have a simple way of “checking” numerical solutions.

For checking the error we know from finance theory, that V is a non
negative, non decreasing function of S and A. Hence, the greatest amplitude
glb|error| of any drop in the numerical solution (for example in connection
to oscillations) is a lower bound for the error Emax = maxij |ENτ

ij | at the end
of the computations, at reverted time τ = 1 .

After some testing, it turns out that selecting hS = hA = 10 and hτ = 0.01
gives results that seem to be not very much influenced by rounding errors.
The main results are presented in Tables 1 and 2, in all cases with zero
artificial viscosity to first reveal the problems before attempting to eliminate
them. We show glb|error| for each of the 36 methods together with symbolic
plots indicating, in black, the approximate areas where the most dominating
part of the error is located at τ = 1 . All cases in Table 1 show

• oscillations of Type 1, centered around a vertical line S = constant

with increasing amplitude as S is increasing. Also all plots in Table 2
not using the boundary condition in S = 0 show oscillations of Type 1,
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Table 1: Results for the 18 cases with an artificial boundary condition in
A = Amin and with hS = hA = 10 , hτ = 0.01

FDM method glb|error| symbolic
τ S A ≤ Emax graph

F1τ F1F1S C2C2Ap/0/f 8 · 106 SA

F1τ F2F2S C2C2Ap/0/f 6 · 1012 SA

F1τ F4F4S C2C2Ap 2 · 1018 SA

F1τ F1C2S C2C2Ap/0/f 300/200/120 SA

F1τ B1C2S C2C2Ap/0/f 300/200/120 SA

F1τ C2C2S C2C2Ap/0/f 300/200/120 SA

but with amplitudes decreasing as S is increasing. Two cases in Table 2
(F1τ − F1F1S − F2F2A and F1τ − F1F1S − F4F4A) show, apart from
the oscillations of Type 1, also

• oscillations of Type 2, extending around the tilted curve A ' 150− S
where V0 (see (2)) has a discontinuity in the first derivative, or rather
in an area starting at the line and going down towards (0, 0).

For F1τ − F1F1S − F2F2A , the oscillations of Type 1 dominate and we
indicated the Type 2 oscillations in white surrounded by black lines. Later
results indicate that all oscillatory solutions have oscillations of Type 2 as
well as of Type 1. The oscillations of Type 2 become evident only when
the amplitude of the type 1 oscillations is sufficiently small. For three cases
(F1τ − F1C2S − F1F1A , F1τ − B1C2S − F1F1A and F1τ − C2C2S −
F1F1A) there are no oscillations, but a small area where E− = V0 − U is
significantly smaller than zero (maxijk |(E−)k

ij| ' 12). This area is indicated
by a single line. Note that E− < 0 does not indicate an error but only a
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Table 2: Results for the 18 cases without an artificial boundary condition
in A = Amin and with hS = hA = 10 , hτ = 0.01

FDM method glb|error| symbolic
τ S A ≤ Emax graph

F1τ F1F1S F1F1A 600 S
A

F1τ F1F1S F2F2A 40 S
A

F1τ F1F1S F4F4A 40 S
A

F1τ F2F2S F1F1A 8 · 109
S

A

F1τ F2F2S F2F2A 108
S

A

F1τ F2F2S F4F4A 6 · 107
S

A

F1τ F4F4S F1F1A 8 · 1016
S

A

F1τ F4F4S F2F2A 1016
S

A

F1τ F4F4S F4F4A 2 · 1015
S

A

F1τ F1C2S F1F1A 0 S
A

F1τ F1C2S F2F2A 8 S
A

F1τ F1C2S F4F4A 30 S
A

F1τ B1C2S F1F1A 0 S
A

F1τ B1C2S F2F2A 8 S
A

F1τ B1C2S F4F4A 30 S
A

F1τ C2C2S F1F1A 0 S
A

F1τ C2C2S F2F2A 8 S
A

F1τ C2C2S F4F4A 30 S
A
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difference between the numerical solution and the lower bound V0 for the
solution. For more details, see Figure 1 for two examples.

For all cases with positive error bounds, a closer investigation, see Ta-
ble 3 for three of the “best” examples, shows that reducing the step sizes
only very slowly, if at all, reduces the error bounds. It may be possible to
reduce oscillations of Type 1, but as these are reduced, oscillations of Type 2
become visible and do not decrease with decreasing step lengths. As hS = hA

is decreased for fixed time step length we run into an instability region lim-
iting the number of useful results. hτ = 1/10.000 and hS = hA = 1 has
been chosen as our computational limit. It requires of the order of 36 hours
on a 700 Mhz Pentium III processor with 256 Mbyte ram using the inter-
preted programming language Maple (version 8). This would correspond to
less than 1/2 hour in a more optimal computational setting. Because of the
smooth, but very slow decrease in the error bound that even seems to turn
into a slight increase we must consider these methods computationally non
convergent. We further make the following observations: In order to elimi-
nate oscillations of Type 1 and reduce the size of oscillations of Type 2 it is
necessary to avoid using (inaccurate) artificial boundary conditions at Amin.
Only the accurate boundary conditions at A = Amax should be used. Further
it is essential to use methods that utilize the boundary condition in S = 0 as
well as those in S = Smax. The boundary condition in S = 0 is not neces-
sary for well posedness of the continuous problem because of the S2 factor
degeneration in the differential operator but the numerical methods behave
as if the degeneracy was not there and S = 0 was an inflow boundary. In
the A directions only the F1F1A option eliminates the Type 2 oscillations.
Higher order A operators again lead to Type 2 oscillations.

To remove the oscillations of Type 1 and 2 we now add artificial viscos-
ity. We test with (νS, νA) ∈ {(ν, 0), (ν, ν), (0, ν)} for ν ∈ {0, 5, 10, 50, 100} ,
(ν2 ∈ {0, 25, 100, 2500, 10000}). For all methods and in all cases the oscil-
lations either increase in amplitude or stay the same. The largest increase
happens when νA is increased. Instead introducing artificial viscosity in the
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F1τ − F1F1S − F2F2A

Vnum-V(sigma=0) error at time T=0.
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Figure 1: The difference EV = V0 − U for two methods with and without
oscillations respectively. hτ = 0.01 , hS = hA = 10



3 Numerical experiments and conclusions C229

Table 3: Results for 3 of the best performing methods for a number of time,
S and A step lengths (hτ = 1/# time steps , hS = hA). In parentheses are
given glb|error| for oscillations of Type 2 whenever such are visible

glb|error| for the method F1τ − F1C2S − C2C2Af

• 50 100 200 500 1000 2000 10000

50 33 33 34 33 33 33 33

20 44 19 21 19 20 20 20

10 9000 120 20 10(13) 8.4(14) 8(14) 7.2(14)

5 4 · 1011 2 · 107 3000 5.6(10) 2.4(11) 2.8(11) 3.2(12)

2 3 · 1053 4 · 1075 3 · 1078 4 · 109 2400 11(8) 11(6)

1 1084 2 · 10139 8 · 10217 6 · 10305 3 · 10242 2 · 108 6.4(0.5)

glb|error| for the method F1τ − F1F1S − F1F1A

• 50 100 200 500 1000 2000 10000

10 300 600 600 800 800 800 800

5 8 · 1016 8 · 1016 3 · 1017 4 · 1017 4 · 1017 4 · 1017 4 · 1017

glb|error| for the method F1τ − F1F1S − F2F2A

• 50 100 200 500 1000 2000 10000

10 120(8) 40(8) 30(8) 12(8) 6(8) 4(8) 2(8)

5 1030 8 · 1015 4 · 1015 1015 8 · 1014 3 · 1014 7 · 1013

• # timesteps = 1
hτ

to the right. hS = hA below.



3 Numerical experiments and conclusions C230

S variable (increasing νS) generally has no effect at all. Hence we reach the
following conclusion: Adding constant artificial viscosities in the S and/or A
variables does not reduce the amplitude of oscillations and hence should not
be attempted. This also shows, that it is not the degenerations in the differ-
ential operator that are creating problems. The reason for the lack of success
for the artificial viscosity approach is likely that the exact solution is almost
linear except for very close to the discontinuity of V0. Hence adding second
order derivative terms changes very little globally. The hope would be that
there were some positive changes close to the discontinuity where the exact
solution is not linear, but the experiments show that this is not the case.

We are then left with the three methods without oscillations. Here a
closer investigation, to be reported elsewhere, shows that even though it
is possible to reduce the error, the convergence is so slow that significant
computing power and computing time is necessary to reduce the error to
the order of for example one cent. The first order consistent time stepping
is showing linear convergence in the τ variable. Instead both the first and
second order consistent methods in the S variable are showing only linear
convergence in this variable. Finally, the linearly consistent method in the
A variable is showing a very slow 1

2
order convergence in this variable.

Unless faster methods for the A direction exist, the only likely solution is
to use adaptive methods, like finite element methods, for the problem.
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