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V -invariant methods, generalised least squares
problems, and the Kalman filter
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Abstract

V -invariant methods for the generalised least squares problem ex-
tend the techniques based on orthogonal factorization for ordinary
least squares to problems with multiscaled, even singular covariances.
These methods are summarised briefly here, and the ability to han-
dle multiple scales indicated. An application to a class of Kalman
filter problems derived from generalised smoothing splines is consid-
ered. Evidence of severe illconditioning of the covariance matrices
is demonstrated in several examples. This suggests that this is an
appropriate application for the V -invariant techniques.
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1 Introduction

The generalised least squares problem is

min
x

rT V −1r ; r = Ax− b , (1)

where A : Rp → Rn , V : Rn → Rn. It will be assumed that A has its full
rank p < n , but only that V is positive semi-definite. Typically, in data
analytic situations, the covariance matrix V has the dimension n of the data
set and is often large, while p, the number of independent variables in the
fitted model, is relatively small. Our aim here is to present an application
of V -invariant methods appropriate to a class of Kalman filter problems
which have distinctly illconditioned covariances and both stable and unstable
dynamics. This application forces well defined sparse structures on both the
design A and the covariance V .

A class of V -invariant algorithms has been introduced by Gulliksson and
Wedin [3]. Here we follow their basic development closely. Their problem
of particular interest is equality constrained least squares which can be ex-
pressed formally as a generalised least squares problem with singular (and
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diagonal) V . This class of problems provide a particular example of the abil-
ity of V -invariant algorithms to support a form of multi-scaling. However,
there are some costs, and they point out the importance of column pivoting
in this application. This proves to be collateral damage occasioned by the
multiple scale capability.

Söderkvist [9] considered the Kalman Filter in the generalised least squares
form [1] for the particular case of a diagonal covariance matrix V and was able
to demonstrate superior numerical performance of his V -invariant methods
for problems in which V possessed several distinct scales. The restriction to
diagonal V is important in developing algorithms, and he has experimented
with methods for reducing the problem covariance to one having this diago-
nal form employing both an eigenvalue decomposition using Jacobi’s method
(V = QΛQT ) and a rank revealing Cholesky factorization with diagonal piv-
oting (PV P T = LDLT ) [10]. In this latter case he was concerned about the
influence of possible errors in small elements of D. Recently, Osborne [7] has
argued that provided the number of small elements in D is k ≤ p then their
effect is benign so that errors in them due to the rank revealing factorization
are insignificant.

The plan of this paper is as follows. First the main results of [3] are
summarised and an approach to deriving stability results in the case of ill-
conditioned V outlined. A class of Kalman filter problems which can occur
in computing smoothing splines and related objects is sketched. The struc-
ture of the generalised least squares form of this problem is then exploited in
implementing V -invariant factorization algorithms. Finally, results showing
that the relevant covariances can be very illconditioned are presented.
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2 V -invariant transformation

We say that the transformation matrix J : Rn → Rn is V -invariant if

JV JT = V . (2)

Let J1 and J2 be V -invariant. Then

• J−1
1 , J−1

2 , J1J2 and J2J1 are V -invariant,

• JT
1 , JT

2 are V −1-invariant (V nonsingular).

If V is singular then it is assumed that it has the reduced form

V =

[
0 0
0 V2

]
. (3)

In this case J is V -invariant iff

J =

[
J11 0
J21 J22

]
, J22V2J

T
22 = V2 ,

and J11, J22 are nonsingular.

The ordinary least squares problem provides the best known example of
V -invariance. Here J is orthogonal and the invariance condition becomes:

V = I ⇒ JIJT = I .

The V -invariant analogue of the Aitken-Householder elementary orthogonal
transformation is the elementary reflector

J = I − 2
V vvT

vT V v
, J2 = I . (4)
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To use (4) in matrix reduction to upper triangular form let u stand for
the current pivotal column in the partially reduced matrix and u2 for the
subvector to be reduced. Then v defining the current transformation step
must be found such that

J

[
u1

u2

]
=

[
u1

γe1

]
.

It follows from (4) that the scale of v is not important, and it is convenient
to set

V v = s

[
0

u2 − γe1

]
, (5)

where s is a scale factor. The computation of v in a standard reduction
to upper triangular form requires solution of this equation. However, it
has a complexity comparable with the original problem unless V is readily
invertible! The important special case corresponds to V = D diagonal with
elements ordered in increasing magnitude. To complete the specification of v
in this case let dim(u1) = j − 1 ,

D = diag{dj, j = 1, . . . , n} = diag{ε1, ε2, . . . , εk, νk+1, . . . , νn} ,

ε1 ≤ ε2 ≤ · · · ≤ εk � νk+1 ≤ · · · ≤ νn ,

v =

[
0
v2

]
= Dj

[
0

D−1
2 (u2 − γe1)

]
.

Here s = dj and the specified ordering results in the effective diagonal matrix
Nj = djdiag{dj, dj+1, . . . , dn}−1 having elements ≤ 1 . The importance of
the ordering of the elements of D is shown also in the calculation of γ. This
computation uses V -invariance:[

u1

u2

]T

JT D−1J

[
u1

u2

]
=

[
u1

γe1

]T

D−1

[
u1

γe1

]
⇒ uT

2 D−1
2 u2 = γ2eT

1 D−1
2 e1 . (6)

There are two cases to consider in (6) depending on the relative values of j
and k:
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j ≤ k

γ2 = (u2)
2
j +

k∑
s=j+1

εj

εs

(u2)
2
s +

n∑
s=k+1

εj

νs

(u2)
2
s , and

j > k

γ2 = (u2)
2
j +

n∑
s=j+1

νj

νs

(u2)
2
s .

Note that there is multiple scale behavior when j ≤ k and that the limit
ε → 0 can be defined, for example, by setting εs/εj = 1 , s > j . Also γ is
the column length in the re-scaled metric defined by Nj.

If elements of J are large then this is an indicator of possible stability
problems [3]! Let

J = I − 2cdT

be an elementary V -invariant reflector. Then

‖J‖2 = η +
√

η2 − 1 , η = ‖c‖2 ‖d‖2 .

Here

η =

∥∥D−1
2 (u2 − γe1)

∥∥ ‖u2 − γe1‖
(u2 − γe1)

T D−1
2 (u2 − γe1)

,

⇒ ‖J‖ ≥ η ≥ ‖u2‖
2γ

.

That is ‖Jj‖ will be large if∣∣Dju
T
2 D−1

2 u2

∣∣ � ‖u2‖ .

The limit ε → 0 gives η large if

‖uε‖ � ‖u2‖ . (7)

Here uε corresponds to {εj, . . . , εk} in D. The role of column pivoting is
important in avoiding just this case.
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Example 1 The inequality (7) is a good guide to instability in V -invariant
factorizations. Let

D =

 ε
ε

1

 , w =

 α
β
ν

 .

The transformation taking w to γe1 in the limit ε → 0 is

I − π

 α
β
ν

 + θ(π1)e1

  α
β
0

 + θ(π1)e1

T

,

where

π =
1

π1π2
, θ = sgn(α) ,

π1 = (α2 + β2)1/2 ,

π2 = |α|+ (α2 + β2)1/2 .

Note that the term πν would be large if α, β � ν violating the stability
condition (7).

3 Solution of the GLSQ problem

In the spirit of the Gauss-Markov theorem write the solution of (1) as a linear
function of the data x = Tb where T generates the best linear unbiassed
estimator and satisfies[

T Λ
] [

D A
AT 0

]
=

[
0 I

]
,
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where V = D diagonal. Let JA = [R 0]T , and J V -invariant. Under this
transformation the system becomes

[ [
T̃1 T̃2

]
Λ

] 
 [

Dε 0
0 D21

]
0

0 D22

 [
R
0

]
[

RT 0
]

0


=

[
0 I

]
.

The solution of the generalised least squares problem can now be written
down. This gives:

T̃1 = R−1 , T̃2 = 0 ,

Λ = R−1

[
Dε 0
0 D21

]
R−T ,

x =
[

R−1 0
]
Jb .

The connection with the solution of the ordinary least squares problem will
be recognised immediately.

If V is not diagonal then start with an LDLT factorization of V and
rewrite the problem (1) by setting L−1r =r̃ = D1/2s to obtain

min
x

sT s ; D1/2s = L−1Ax− L−1b .

This has been implemented by making a rank-revealing Cholesky factoriza-
tion of V :

PV P T → Ldiag {dn, dn−1, . . . , d1}LT ,

where the the lower triangular matrix L has unit diagonal, and diagonal
pivoting ensures both

dn ≥ dn−1 ≥ · · · ≥ d1 (8)

and
Lij ≤ 1 , i > j . (9)
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Our code terminates if a sufficiently small (or negative) di is encountered.
A key point is that any illconditioning in V is largely forced into D by this
factorization as a consequence of the bound (9) on the subdiagonal elements
of L. Conditions for success [4, e.g.] correspond to the assumptions made
already on D. However, a further permutation step is needed to reverse
the order of the elements in the computed D to stabilize the V -invariant
transformation. This means the diagonal elements computed last in the
Cholesky algorithm enter first into the factorization process. It would be
expected that these small di could have high relative error. It is an important
result that these errors are not significant. This is demonstrated in [7]. The
result can be made plausible by considering the case

D = diag {0, . . . , 0, dk+1, . . . , dn} , k < p ,

which gives the equality constrained problem

min
x

sT s ;

[
0

D
1/2
2

]
s =

[
A1

A2

]
x−

[
b1

b2

]
.

This is the limiting problem associated with the penalised objective

min
x

{
rT
2 D−1

2 r2 + λrT
1 r1

}
; r =

[
A1

A2

]
x−

[
b1

b2

]
,

which has the alternative form

min
x

sT s ;

[
λ−1/2I

D
1/2
2

]
s =

[
A1

A2

]
x−

[
b1

b2

]
.

From the theory of penalty functions [2] expect

‖x (λ)− x (∞)‖ = O (1/λ) , λ →∞ .

The argument is developed by showing that a certain Jacobian matrix
corresponding to the λ = ∞ limit is nonsingular, and that the large λ case
is a small perturbation of this.
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4 g-splines and the Kalman filter

Generalised smoothing splines having the representation E{hTx(t) | y1, . . . , yn}
can be defined by means of the class of stochastic differential equations:

dx = Mx dt + σ
√

λb dw , (10)

where M : Rm → Rm and w is a unit scale Wiener process, in conjunction
with the observation process

hTx(ti) + εi = yi , εi ∼ N(0, σ2) , (11)

where the errors εi are assumed independent. Here the vector h must satisfy
identifiability conditions and, together with b, determines the smoothness of
the resulting spline [6]. Let the fundamental matrix X(t, ξ) be defined by

dX

dt
= MX , X(ξ, ξ) = I .

Variation of parameters gives the discrete dynamics equation

xi+1 = Xixi + σ
√

λui , (12)

where

ui =

∫ ti+1

ti

X(ti+1, s)b
dw

ds
ds ,

ui ∼ N(0, σ2λRi)) .

This system—dynamics + observation equations—leads via the Kalman
filter subject to a diffuse prior to the generalised least squares problem [1]

min
x

{
rT
1 R−1r1 + rT

2 V −1r2

}
, (13)
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where

[
r1

r2

]
=



−X1 I
−X2 I

. . .

−Xn−1 I
hT

hT

. . .

hT


x−

[
0
y

]
, (14)

R = σ2λdiag{R1, R2, . . . , Rn−1} , V = σ2I , (15)

and

Ri =

∫ ti+1

ti

X(ti+1, s)bbT X(ti+1, s)
T ds . (16)

Paige and Saunders [8] suggested reducing this problem to an ordinary least
squares problem by making a Cholesky factorization of the covariance blocks Ri.
These are then used to rescale the dynamics equations to produce a problem
with unit diagonal covariance that can be reduced by orthogonal transforma-
tions. This leads to their famous information filter. However, Sőderkvist [9]
showed there are potential problems arising from illconditioned Ri. The al-
ternative we consider is to use a V -invariant factorization starting with a
rank revealing Cholesky applied to the Ri corresponding to successive col-
umn blocks, followed by within column block sorting of the diagonal ele-
ments di and division by potentially much better behaved lower triangular
matrices Li. Straight forward application of this procedure under the or-
dering given in (14) results in accumulating fill. This is seen readily by
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considering the first few steps. These give:



−L−1
1 X1 L−1

1

−L−1
2 X2 −L−1

2
...

...
...

hT

hT

hT


→



U1 W1

−L−1
2 X2 L−1

2
...

...
...

zT
11

hT

hT



→



U1 W1

U2 W2
...

...
...

zT
21

zT
22

hT


.

The ordering used in the Paige and Saunders information filter generates
less direct fill. However, fill can be controlled to a total of m + 1 rows in
the next to pivotal block column by orthogonal transformations which are in
this context V -invariant as the blocks affected are associated with covariances
proportional to the unit matrix being derived from the second term in (13).
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The orthogonal transformations are first applied at step m

. . . . . . . . .
Um Wm

−L−1
m+1Xm+1 L−1

m+1

. . . . . . . . .

zT
m1

zT
m2

...

zT
mm

hT



→


. . . . . . . . .
Um Wm

−L−1
m+1Xm+1 L−1

m+1

. . . . . . . . .
Zm

0

 ,

where Zm : Rm → Rm . It is convenient to carry out the transformation in
two steps in order to compute auxiliary quantities such as the innovations
xi|i−1 . These are: 

zT
i1
...

zT
im

hT

 →

[
Z1

i

hT

]
→

[
Zi

0

]
.

Our initial implementation has proved satisfactory in early experiments.
In particular, there has been good control over the magnitudes occurring.
The information filter has been used previously in problems of this kind [5],
but it is not able to cope with the severe illconditioning that can occur in
the Ri matrices [9]. This illconditioning is directly related to the smoothness
of the spline. This is illustrated in the following examples.

Example 2 Quintic splines. This corresponds to the case

M =

 0 1 0
0 0 1
0 0 0

 , h =

 1
0
0

 , b =

 0
0
1

 ,
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with h and b chosen for maximum smoothness. The covariance matrix blocks
are readily computed:

Ri = δ


δ4

20
δ3

8
δ3

6

δ3

8
δ2

3
δ
2

δ3

6
δ
2

1

 .

The rank revealing Cholesky gives

PRiP
T = δ


1

δ
2

1

δ2

6
− δ

2
1




1

δ2

12

δ4

720




1 δ
2

δ2

6

1 − δ
2

1

 .

Note the small elements in the component blocks Di of D. However, there
are (n− 1)(m− 1) of these all told while the design is Rnm → Rnm+n so the
conditions for the solubility of the generalised least squares problem can be
satisfied.

Example 3 Tension smoothing splines. Here the spline is constructed using
exponentials rather than polynomials. This corresponds to an example with
potentially unstable dynamics. For one and two parameter splines we have

M =

[
0 1
α2 0

]
,


0 1 0 0
α2 0 1 0
0 0 0 1
0 0 β2 0

 .

Smoothness is maximized by the choice h = e1 , b = em . Again the co-
variances are illconditioned leading to very small elements in the component
blocks Di. These particular tension spline examples are not very unstable,
but instability does not appear to be the major driver for the small elements
in Di. The following table gives the diagonal elements produced by the rank
revealing Cholesky decomposition for two different meshes on 0 ≤ t ≤ 1 .
They are the same for each block of D.
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Table 1: Tension splines provide a potentially unstable system
α = 1

n = 11 Di = {8.3− 5, 1.0− 1}
n = 51 Di = {6.7− 7, 2.0− 2}

α = 1 , β = 2
n = 11 Di = {9.9− 13, 1.4− 8, 8.3− 5, 1.0− 1}
n = 51 Di = {0.0, 4.4− 12, 6.7− 7, 2.0− 2}

Table 2: A stable example from chemical kinetics
k1 = 1 , k2 = 2

n = 11 Di = {5.5− 8, 6.8− 5, 9.1− 2}
n = 51 Di = {1.8− 11, 6.4− 7, 2.0− 2}

Example 4 A stable example is provided by the simple chemical reaction
A → B → C with rates k1 and k2. Here the differential equation is

d

dt

 A
B
C

 =

 −k1 0 0
k1 −k2 0
0 k2 0

 A
B
C

 .

Well-posedness of the estimation problem requires (h)3 6= 0 . Maximum
smoothness of the g-spline is achieved with b = e1 , h = e3 . Table 2 gives
the diagonal elements of the rank revealing Cholesky for the same meshes as
above. Again small elements are produced.
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