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Techniques for predicting total phosphorus in
urban stormwater runoff at unmonitored

catchments
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Abstract

This paper investigates the applicability of using artificial neural
network (ann) and multilinear regression models to predict urban
stormwater quality at unmonitored catchments. Models were con-
structed using logarithmically transformed environmental data. Vio-
lation of the assumption of data independence lead to the inclusion of
insignificant variables when a straightforward stepwise regression was
applied. To overcome this problem, cross validation was used to de-
termine when to stop adding variables. Regression models calibrated
using event mean concentration (emc) as the dependent variable were
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more accurate than those using event load. Regression models devel-
oped on a regional subset of data were more accurate than the models
developed on the entire data set. Even though regression and ann
models yielded similar predictions, regression modelling was consid-
ered to be a more applicable approach. Compared to ann models,
regression models were faster to construct and apply, more transpar-
ent and less likely to overfit the limited data.
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1 Introduction

The adverse impacts of urbanisation on the aquatic environment have been
recognised for many decades. In order to design appropriate measures to con-
trol polluted stormwater runoff, the extent of the problem must be known.
The high costs associated with the collection and analysis of stormwater
quality sampling data has created a demand for models capable of predicting
urban stormwater quality at unmonitored catchments [1, 2, 3, 4]. Simple
estimates of pollutant loads at unmonitored sites are often obtained using
event mean concentration (emc) values from sampling programs in similar
regions. The high variability of water quality data observed at and between
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sites has contributed to the limited success of these models [5]. Large na-
tional and regional databases have also been used to regress water quality
variables against general geographic and climatic data. In a study by Driver
and Tasker [3] U.S. data from the National Urban Runoff Program (nurp)
was separated into three regions based on the mean annual rainfall of the
sites. Three separate models for each water quality variable were then gener-
ated by linearly regressing the logarithmic transforms of the dependent and
independent variables.

Artificial neural network (ann) models are capable of modelling complex,
nonlinear systems without prior knowledge of the exact relationships between
variables [6]. The ability of ann models to replicate nonlinear relationships
makes them suitable for modelling environmental systems [7]. ann mod-
els have recently been used in many water resources applications, including
surface water quality forecasting and the prediction of chemical dosage in
water treatment plants [8]. In this paper, the applicability of using ann and
regression models to predict urban stormwater quality at unmonitored sites
was assessed.

2 Methodology

The data used in this study consisted of water quality, climatic and geo-
graphic data collected by the usepa and usgs in the 1970’s and 1980’s [9].
The dependent variable analysed was total phosphorus (tp); measured as
either a load or a concentration. The independent variables used in the
following analyses that had values for every storm event are presented in Ta-
ble 1. Maximum 24 hour precipitation intensity that has a 2 year recurrence
interval (int), measured in millimetres, was the only independent variable
that had missing values.

The main objective of the study was to model storm events at typical
urban watersheds. Catchments that contained uncharacteristic catchment
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Table 1: Independent variables

Variable Abbreviation Unit
percentage of residential landuse lur % drainage area
percentage of non urban landuse lun % drainage area
percentage of commercial landuse luc % drainage area
percentage of industrial landuse lui % drainage area
impervious area ia % drainage area
drainage area da ha
total event rainfall trn mm
mean annual rainfall mar mm

attributes beyond the scope of modelling were identified as potential out-
liers. Catchments with drainage areas greater than 3000 hectares, propor-
tions of agricultural landuse greater than 50%, proportions of industrial lan-
duse greater than 50%, population densities greater than 130 people per
hectare or with detention basins upstream of the sampling point were re-
moved. A total of 275 storm events were removed. A base ten logarithmic
transformation was then applied to both the dependent variable and inde-
pendent variables. A constant was added to variables that had zero values
in order to scale the data into a suitable domain prior to logarithmic trans-
formation. Numerous studies indicate that water quality variables follow
lognormal distributions [3, 2, 5]. Logarithmic transformation of the data en-
sured that large, potentially outlying values did not bias the optimisation of
calibration coefficients [3]. The other advantage of the logarithmic transfor-
mation was that it enabled the construction of nonlinear, nonadditive models
using a simple multilinear regression procedure.

Error measure selection can influence the relative judgement of model
performance. The standard error of estimate (see) and average absolute
percentage error (aape) do not place considerable emphasis on the large
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potentially outlying values, and allow the direct comparison between mod-
els constructed using load or concentration as the dependent variable when
runoff volume is known. The standard error of estimate is a pseudo per-
centage error calculated from the mean square error in log (base 10) units:

see = 100×
√

e[5.302 σ2] − 1 . (1)

The standard error of estimate places greater emphasis on the under pre-
diction of large values than the average absolute percentage error. Both the
standard error of estimate and average absolute percentage error were used
to compare predictions from the constructed models.

Regression models were initially constructed using data from 754 storm
events. This was to enable a direct comparison between load and concentra-
tion models on an equivalent domain. Stepwise multilinear regression models
were developed using the logarithmically transformed data. If the p-value of a
variable was greater than 0.05, the variable was entered into the model. Vari-
ables already in the model were removed if their p-value increased above 0.1 .
The p-values represent the probability that the regression coefficient is not
significantly greater than 0 . Regression models were created using either to-
tal phosphorus load or concentration as the dependent variable. Once a series
of regression models had been developed (ranging from a simple one variable
model to more complicated multivariable models) the standard error of esti-
mate and average absolute percentage error were calculated for each model.
The dependent variable producing the minimum error was analysed in more
detail. Since multiple storm events were monitored at almost all of the catch-
ments in the data set, the majority of independent variables did not satisfy
the assumption of data independence. All analysed independent variables
apart from total storm rainfall had constant values for a given catchment.
This reduced the effective size of the data set, resulting in an underestimation
of the p-value and the potential incorporation of spurious variables into the
model. To overcome the problem, a cross validation approach was adopted.
Ten disjoint data sets each containing approximately 10% of the data were
created. Ten analyses were undertaken, with a different set being used for
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validation purposes each time. The remainder of the data (90%) was used
for model calibration. Inputs were sequentially entered into the models in
the same order as a stepwise regression model calibrated on all the available
data. The average absolute percentage error and standard error of estimate
were calculated for each validation set and averaged. Variables leading to
an increase in either of the error measures were typically considered to be
insignificant and removed from the model.

A second regression analysis was undertaken on a regional subset of the
data. Catchments with mean annual rainfalls between 500 and 1000 millime-
ters were separated from the total data set, in accordance with the study
by Driver and Tasker [3]. The variables found to be significant in the study
by Driver and Tasker were analysed along with the variables found signifi-
cant in the cross validated, regression analysis of the larger data set. The
variables were entered into the regression model in order of their anticipated
significance. Cross validation using 10% of the data for validation was used
to verify the significance of the independent variables. Variables not reduc-
ing the validation set errors were typically considered to be insignificant and
removed from the model.

ann models were constructed using the dependent and independent vari-
ables found significant in the regression analysis. The “pruning method”
based upon the sensitivity analysis of constructed ann models was per-
ceived to be an excessively time consuming way to select ann input vari-
ables. Feedforward, backpropagation neural networks were optimised using
the normalised cumulative delta rule learning algorithm. The equation for
the update of network weights is

∆wji(t) =
1√
ε

ε∑
s=1

[η(dj − yj)f
′(.)yi] + µ∆wji(t− 1) , (2)

where ∆wji = weight update between nodes i and j at time t, η = learning
rate, dj = the actual output value, yj = the predicted output value, f ′(.) =
the derivative of the transfer function with respect to its input, ε = epoch
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size, µ = momentum and s = the training sample presented to the network.
An epoch equal to the training set size was selected. The logarithmically
transformed data was scaled within the bounds of the hyperbolic tangent
transfer function. The input variables were scaled between −1 and 1, and
the output variable between −0.8 and 0.8 . The learning rate for the weights
connecting the input layer to the hidden layer and the hidden layer to the
output layer were set at 0.04 and 0.02 respectively. Momentum was set
at 0.01. Only one hidden layer was used, due to the limited amount of
data available. The number of hidden nodes was determined by trial and
error. The effect of learning rates and momentum on model accuracy was
also analysed. Cross validation was used to determine when to stop training
the network. The data was separated into ten disjoint sets, equivalent to
those defined during the regression analysis. Ten ann models were created,
using a different 10% of the data as a test set each time. For each of the ten
test sets, the mean square error was calculated for each weight update. An
average of the mean square errors for the ten test sets was calculated for each
weight update. The number of weight updates corresponding to the lowest
average test set error was defined as the stopping point.

3 Results and Discussion

The results from the multilinear stepwise regression models constructed on
the 754 data point set are presented in Table 2. Load models had errors more
than 50% larger than the concentration models. Therefore concentration was
used as the dependent variable during subsequent analyses. Stepwise regres-
sion models were then constructed using the 965 data point set in order to
maximise the quantity of data used to construct the concentration model. Ta-
ble 3 compares the results from the regression analyses using 100% and 90%
of the data for calibration. The errors from the cross validation analysis using
90% of the data for calibration are prediction errors, whereas the errors from
the analysis using all the data for calibration are calibration errors. The re-
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Table 2: Comparison between concentration and load stepwise regression
models developed on a 754 data point set

Concentration model Load model
Variable aape see Variable aape see
added (%) (%) added (%) (%)
mar 89 107 da 297 284
lur 79 96 trn 190 189
lun 78 95 mar 165 166
da 77 94 lun 150 159
trn 77 93 luc 140 153
lui 76 92 lui 134 152

lur 132 151

sults from the cross validation analysis showed that only mean annual rainfall
and the percentage of residential landuse lead to improvements in both the
standard error of estimate and absolute average percentage error. Therefore,
only these two variables were deemed to be significant on the 965 data point
set.

Regression equations were then developed on the regional subset con-
sisting of 374 storm events. Results from the analysis of the larger data set
justified the use of total phosphorus concentration as the dependent variable.
The variables found to be significant in the study by Driver and Tasker [3]
were total storm rainfall, total contributing drainage area, impervious area
and maximum 24 hour precipitation intensity that has a 2 year recurrence
interval. These variables were combined with mean annual rainfall and the
percentage of residential landuse. Theoretical considerations combined with
information extracted from stepwise regression models determined the or-
der of variable entry into the final regression model. The results from the
analyses using 100% and 90% of the data for calibration are presented in
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Table 3: The effect of input addition on model error for regression models
developed on the 965 data point set using total phosphorus concentration as
the dependent variable

Calibration set 100% 90%
Variable aape see aape see
added (%) (%) (%) (%)
mar 86.2 102.3 90.8 106.5
lur 78.8 94.4 83.4 98.5
trn 78.5 93.8 83.8 98.4
da 77.9 93.4 83.9 98.7
lun 77.5 92.5 83.9 98.2

Table 4. The cross validation analysis isolated drainage area as the only
variable that did not improve either the average absolute percentage error
or standard error of estimate. Therefore, drainage area was removed from
the model. Impervious area and total event rainfall only reduced one error
measure. However, when impervious area and total event rainfall were added
together, both error measures reduced. Total event rainfall was also the only
available variable in the data set capable of describing storm to storm vari-
ability at a site. Therefore, total event rainfall and impervious area were left
in the model.

Artificial neural networks were developed to predict total phosphorus con-
centration. Two independent variables were not considered to be sufficient
to construct ann models on the 965 data point set. Therefore, ann models
were only constructed on the regional dataset using the significant inputs
from the regional regression analysis. The optimum number of hidden nodes
was shown to be 10. The standard error of estimate changed by less than
two percent when the number of hidden nodes was varied between 5 and 15.
Increasing the learning rates and momentum typically increased the speed
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Table 4: The effect of input addition on model error for regression models
developed on the regional subset using total phosphorus concentration as the
dependent variable

Calibration set 100% 90%
Variable aape see aape see
added (%) (%) (%) (%)
int 71.4 84.4 72.8 86.2
lur 61.6 76.8 63.7 79.0
mar 60.3 76.2 62.5 78.4
ia 59.3 75.5 61.4 78.6
trn 59.3 75.2 61.6 78.2
da 59.3 75.2 63.3 80.2

of the network convergence and the size of the error oscillations near the lo-
cal minimum. Hidden layer learning rates greater or equal to 0.08 produced
excessively large error oscillations around the local minimum. The standard
error of estimate changed by less than 0.1% when the hidden layer learn-
ing rate was less than 0.06 . Varying the momentum also only changed the
standard error of estimate by about 0.1%. In general, the selection of the
number of hidden nodes influenced model accuracy more than the selection
of learning rates or momentum.

Regression and ann models were compared on the regional subset. The
results presented in Table 5 suggest that regression and ann models con-
structed on the regional subset had very similar accuracies. The regression
model constructed using regional data was more accurate than the model
constructed using all the available data. It was anticipated that a more com-
plicated combination of relationships between variables was present within
the larger data set. The lack of significant inputs restricted the ability of the
regression model to replicate the complicated relationships.
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Table 5: Validation results from concentration models compared on the
regional subset

Model Calibration aape see Input
Type Domain (%) (%) Variables
ann 374 61 78 int,lur,mar,ia,trn
Regression 374 62 78 int,lur,mar,ia,trn
Regression 965 65 90 mar,lur

Data limitations in the current study were exacerbated by violations of
data independence for the bulk of variables. Instead of analysing a large
dataset equal to the number of storm events, a smaller subset equal to the
number of catchments was effectively analysed. The effective size of the data
set was approximately an order of magnitude smaller than the actual data
set size. This made the modelled relationships tenuous, thereby decreas-
ing the likelihood that ann and regression models would accurately predict
water quality at unmonitored sites. Inaccurate predictions are inevitable
without the inclusion of a significant descriptor of storm to storm variability
at a single site. Total event rainfall was not able to accurately define such
variability. The comparable accuracies of the regression and ann models con-
structed on the regional dataset inferred that the ann model was not more
adept at defining storm to storm variability at a site. This inferred that ann
models constructed on the total dataset would probably require additional
storm descriptors, which were generally unavailable at a large proportion of
the studied catchments. The inclusion of additional storm descriptors would
have further reduced the size of the dataset, thereby limiting the applicability
of applying ann. The construction of an ann model on the entire dataset
using of all available variables might produce more accurate results. How-
ever, the potential inclusion of superfluous variables was perceived to reduce
the accuracy of the final models and make it difficult to isolate significant
variables. The identification of additional synergistic relationships between
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the existing variables was considered to be overly time consuming compared
to the benefit extracted from the identification of such relationships.

4 Conclusions

It was found that models using concentration as the dependent variable were
more accurate than those using load. This was an important finding con-
sidering that the majority of current computer simulation models require
estimates of concentration rather than load. When load was used as the de-
pendent variable, the regression models were forced to simulate the known
relationship existing between load and runoff volume, leading to an unnec-
essary increase in the complexity of the models. However, if the volume of
runoff is not accurately known, load models might provide better estimates of
the total load than the concentration models. Regression models constructed
using the total data set were less accurate than those constructed on the re-
gional subset of data. The reduced data complexity combined with the use
of additional variables contributed to the increased accuracy of regression
models constructed on the regional subset.

Violation of the assumption of data independence significantly reduced
the applicability of constructing models on the larger data set. Total event
rainfall was the only variable capable of describing storm to storm variation
at a single catchment. However, total event rainfall was deemed to be in-
significant on the larger data set. This meant that the effective size of the
larger data set was too small to successfully apply ann. In general, the
regression equations were shown to be a more applicable approach on the
regional subset. The simple form of regression models made them quick to
construct and less likely to overfit the data.
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