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schemes for the simulation of an
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Abstract

In this investigation solutions have been obtained using an Eule-
rian time accurate fractional step Direct Numerical Simulation (dns)
scheme for a homogeneous incompressible planar jet and the results
compared with those obtained using a Lagrangian Direct Simulation
Monte-Carlo (dsmc) method. Comparisons were made of various flow
features using plots constructed from instantaneous and ensemble av-
eraged data. Details of the schemes, computational requirements and
the accuracy obtained with each of the methods will be presented.
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1 Introduction

The instability of a two dimensional planar jet has been extensively investi-
gated by many researchers over the years by exploiting the primary weakness
of the flow, its inability to remain steady at high Reynolds numbers [7, 5, 4, 2].
As a consequence, a good understanding of the flow and instability features
has been obtained for the incompressible planar jet. Comparisons will be
made between the solutions obtained using the Eulerian time accurate frac-
tional step Direct Numerical Simulation (dns) scheme with those obtained
using a Lagrangian Direct Simulation Monte-Carlo (dsmc) method for a
homogeneous incompressible planar jet discharged into a sudden expansion.
The objective of this study is to assess the strengths and weaknesses of each
scheme for a given expansion ratio (er) which is defined as the height of the
domain over the jet inlet height. This will be achieved by comparing the
general flow structure, solution representation, the time taken to obtain an
accurate solution and computer resource usage.

Both dns and dsmc simulations were performed on a Pentium 4 work-
station cluster consisting of 32 machines. Each machine has an Intel 850
chipset, 1.6 GHz Pentium 4 processor, a 400 MHz fsb and 512 Mb rdram
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with 3.2 Gb/s peak memory bandwidth.

2 Eulerian DNS

The dns scheme is used to solve the Navier-Stokes equations for incompress-
ible flow. In dimensionless form, these are
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Here u and v are the x and y direction component velocities respectively, t is
time, p is the pressure and Re is the Reynolds number, based on the jet inlet
velocity and height.

For this analysis, the discretised governing equations were solved in the
domain 0 ≤ y ≤ er , 0 ≤ x ≤ L , where L is the non-dimensional length of the
domain. er is the expansion ratio defined as Y/H0, with Y the dimensional
height of the domain and H0 = 1 the dimensional jet inlet height. The centre
of the jet inlet is located at x = 0 , y = er

2
which corresponds to the centre

of the left hand side of the domain. The outlet is located at x = L and
extends from y = 0 to y = er . The top, bottom and left boundaries, with
the exception of the jet inlet, are impervious with zero velocity, while the
right boundary is open with zero normal velocity gradient. Initially the fluid
is quiescent with u = v = 0 and the jet enters with a uniform velocity profile.
Stream function contours for a typical dns solution are shown in Figure 1
for Re = 40 , er = 3 at t = 500 .

The governing equations are solved using a second-order time accurate
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Figure 1: Stream function contours for a typical dns solution for Re = 40 ,
er = 3 , L = 20 at t = 500 .

fractional step Navier-Stokes solver. The domain is discretised on a non-
staggered grid using finite volumes with no nodes lying on the boundaries.
The boundary values are set by including an extra point outside the boundary
with a prescribed value. The value on the boundary is then the average of this
outside node and its closest interior neighbour. When values of dependent
variables are required at locations other than the nodes, linear interpolation
is used. The viscous, pressure gradient and divergence terms are approxi-
mated using three point second-order central differencing and the advection
terms are discretised using the quick third-order upwind scheme [6]. Time
integration is achieved using an explicit Adams-Bashforth scheme for the ad-
vection terms and an implicit Crank-Nicolson scheme for the diffusive terms.
The pressure is obtained and continuity enforced via a Poisson pressure cor-
rection equation which was discretised using centred second order differences.
The momentum equations are inverted using an adi solver and the Poisson
pressure correction equation is inverted using a restarted gmres scheme [1].

In the x direction a non-uniform grid is used with the smallest cell size
set to ∆x = 0.038 located at x = 0 , expanded by a stretching factor of 1.10 .
In the y direction the jet inlet region is spanned by a uniform grid with
∆y = 0.03 . The grid is then stretched towards the upper and lower bound-
aries, contracting again at the boundaries with ∆y = 0.03 adjacent to each
boundary, with maximum stretching and minimum contraction factors of 1.05
and 0.95 respectively. This configuration results in 195 × 186 nodes in the
x and y directions, with 33 nodes spanning the jet inlet. Grid dependency
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tests were carried out on fine and coarse mesh configurations and their so-
lutions compared with the solution obtained for the mesh outlined above.
Three time steps were tested and compared for all mesh configurations,
∆t = 0.05 , ∆t = 0.01 and ∆t = 0.001 with ∆t = 0.01 used for this in-
vestigation. Grid and time step dependency results show negligible variation
in the flow pattern characteristics and critical Reynolds numbers.

The stream function results for four Reynolds numbers are shown in Fig-
ure 2. In this figure from top to bottom Re = 40 , 50, 60 and 120 respectively,
with er = 3 and t = 500 .

In Figure 2 for Re = 40 the flow is steady and symmetric as the recircula-
tion zones above and below the jet inlet both have a length of approximately
x = 2 . As the Reynolds number was increased from Re = 40 to Re = 50 the
recirculation zones grew downstream in the x direction proportionally. For
Re = 50 the flow is symmetric, while for Re = 60 the jet bifurcates towards
the top of the domain, with the critical Reynolds number for such a bifurca-
tion seen here as 50 ≤ Recrit ≤ 60 . The recirculation zone below the jet inlet
increases in the down stream direction whilst the recirculation zone above
the jet inlet proportionally decreases. The Re = 120 result shows a similar
structure with attachment to the top of the domain. This flow was steady
with the recirculation zone above the jet inlet having a length of approxi-
mately x = 3 and the recirculation zone below the jet inlet approximately
x = 11 . All the results shown in Figure 2 were steady and fully developed.

3 Lagrangian DSMC

dsmc is a gas flow technique originally designed for rarefied gas dynamics.
dsmc employs a three step algorithm within each time step interval. The
technique is a time dependent simulation of the governing Boltzmann equa-
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Figure 2: dns Stream function solutions from top to bottom for Re = 40 ,
50, 60 and 120 respectively, each with er = 3 , L = 20 and t = 500 .
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tion for gas flow,
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Here n is the number density of gas molecules, f is the distribution function
for velocity c, r is the position vector and F is an external force per unit
mass. The left hand side represents changes to the state of the flow due to
transport of molecules into the volume, convection of molecules within the
volume and the forces applied to molecules due to the interaction with solid
boundaries. The right hand side is the change of molecular state due to
intermolecular interactions [3].

In this method Boltzmann and Maxwell introduced a function f(x, v, t)
that describes the density of particles which at the point x and time t have
velocity v; this is a solution of the Boltzmann equation (4). A density func-
tion fN(xi, . . . , xNvi, . . . , vN) is formed and describes the probability of a
molecule existing at xi at time t with velocity vi.

A number that describes the degree of rarefaction of the flow is the Knud-
sen number

Kn =
λ

L
, (5)

where L is a length scale and λ the molecular mean free path. When 0.01 <
Kn < 0.1 the degree of rarefaction is small which is a requirement for the
Navier-Stokes equations to be valid. A further requirement in this study is
flow incompressibility and the Mach number is less than 1.

A typical dsmc solution for Re = 20 , Kn = 0.0040 and er = 3 is shown
in Figure 3.

Lagrangian motion of simulated particles is calculated with each particle
moving an appropriate distance during the interval related to its velocity.
Physical interactions with flow field boundaries are predicted and molecules
may be introduced or removed from the simulation based on the local bound-
ary conditions. Molecules are allocated sub-cell indexes and the probability
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Figure 3: Typical dmsc Solution with Re = 20 , Kn = 0.0040 and er = 3

of collision for sub-cell pairs is estimated. A randomised acceptance and re-
jection process is implemented to effect molecular interaction in a sub-cell.
The number of collisions processed in a time step is determined by the current
gas properties in the sub-cell. For each collision pair, post collision velocities
are calculated and sampling of molecular properties is carried out at the cell
level. Either time averaging is used to determine steady flow properties or
ensemble averaging for snapshots of unsteady flow behaviour.

The procedure is repeated until an acceptable level (< 1% deviation be-
tween samples) of accuracy is reached in the sampling process. The mo-
tion and collision steps are decoupled, based on the assumption of a dilute
gas. This assumption also allows interactions to be determined solely as
molecular-pair collisions.

The algorithm used for predicting post-collision velocities incorporates
the following numerical models which have been verified against physical ex-
periments [3]: Variable Hard Sphere (vhs) molecular models with a viscosity-
temperature index for representing translational energy effects; Larsen–Bor-
gnakke model for molecular rotational degrees of freedom; quantum model
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used for molecular vibrational degrees of freedom; reaction rate models for
predicting chemical interactions between differing species of molecule.

The algorithms used for modelling boundary conditions and gas/surface
interactions incorporate: classical diffuse reflection model with complete ac-
commodation of the gas to the surface temperature; specular reflection with
complete slip and no energy transfer at the surface; partial accommodation
modelled by a diffuse reflection with a specified fraction of specular reflection;
Maxwellian distributions of entry and exit gas molecules. A full description
of the method used here is given in Bird [3].

In this investigation, to study the flow from a 2-D orifice, the gas used
is air (80% nitrogen and 20% oxygen) taken to be an ideal gas. Flow inlet
and exit conditions were set to be uniform airflow at 500K with an average
velocity of 100m/s and L = 200mm. The external walls and the orifice
surface were modelled as diffuse surfaces with a temperature of 500K.

A dsmc solution of horizontal velocity contours and horizontal velocity
profiles for a subcritical incompressible horizontal planar jet with Re = 38 ,
Kn = 0.0040 and er = is shown in Figure 4. The flow exhibits flow features
that are similar to the dns solutions such as the two recirculation regions close
to the jet inlet. The horizontal velocity profiles show that the jet enters the
domain with a uniform velocity profile. This flow was seen to be symmetric
and steady. Increasing the Reynolds number to Re = 49 , with Kn = 0.0040
and er = 3 results in jet bifurcating towards the bottom of the domain and
then remaining steady for all time. This result is shown in Figure 5.

For a large expansion ratio the axial velocity of both the dns and dsmc
steady symmetric solutions along the jet centreline for Re = 21 , L = 20 and
er = 21 are shown in Figure 6. This figure shows that the maximum jet
axial velocity clearly has an x−1/3 form.

In Figure 7 both dns and dsmc solutions show the jet height in the
transverse y direction as a function of x, where the growth of the jet height
follows an x2/3 profile.
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Figure 4: dsmc result for Re = 38 , Kn = 0.0040 and er = 3 .
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Figure 5: dsmc result for Re = 49 , with Kn = 0.0040 and er = 3 .
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Figure 6: dns and dsmc jet decay in the streamwise x direction for Re = 21
and er = 21 .
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Figure 7: dns and dsmc Jet height in the transverse y direction as a
function of x for Re = 21 and er = 21 .
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The jet width was determined by considering the portion of the 25 hor-
izontal velocity profiles that extends from the jet centreline to the upper
boundary. As the profile is symmetric about the centreline for Re = 21 , the
jet width is equivalent to twice the distance from the centreline to the local
minima on the plot of each velocity profile.

Figures 6 and 7 demonstrate that the jet profiles clearly follow Schlicht-
ing’s analytic spreading rate results for a laminar planar jet in the x and y
directions [8].

4 Conclusions

For simulation of the incompressible horizontal jet discharged into a sudden
expansion both dns and dsmc show that the jet decays in the streamwise
direction like x−1/3 and spreads in the transverse direction like x2/3. dsmc
has shown [3] that near continuum solutions can be obtained when the mean
velocity of the flow is sufficiently large. Low mean speed flows are computa-
tionally intensive and time dependent behaviour can not be easily identified.
dns provides the full range of turbulent scales although has difficulty when
dealing with moving boundaries, free surfaces and irregular boundaries.

The above results clearly show that both dns and dsmc schemes can
be used for simulation of a low Reynolds number incompressible horizontal
planar jet. To obtain a fully developed solution the dns scheme takes approx-
imately 1 day of compute time with a 195×186 node grid and a convergence
criteria of 1.0 × 10−4 on the divergence and 1 × 104 time steps. The dsmc
scheme takes approximately 4 days to achieve an acceptable convergence with
an average of 2 million molecules present in the domain at each time step.
However the acceptable convergence for dsmc is based on a statistical crite-
ria which is typically of the order of machine precision since the statistical
fluctuations decline with the square root of the number of molecules. To this
extent there is no time advantage if the dns solution is subjected to the same
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convergence criteria [3].

The advantage of the dns scheme and in particular Eulerian schemes on
structured grids is that they can cover both low Re and high Re flows as well
as the full range of turbulence scales. The advantage of the dsmc in contrast
is that it requires no discretisation and time integration assumptions and no
numerical grid. Hence the dsmc scheme relies only on the physical properties
of the molecule. A high mean speed flow converges quickly to an acceptable
solution and there is no requirement for any turbulence models.

For dns schemes difficulties are experienced in flows containing moving
boundaries, free surfaces and irregular boundaries. The disadvantage of the
dsmc schemes are that they require large numbers of molecules to improve
resolution and statistical averages. A low Re flow requires more time to
obtain an acceptable convergent solution. Solutions of unsteady flows are
ensemble averaged and therefore time dependent behaviour such as instability
features cannot be easily identified. Additionally the dsmc solution requires
that a large number of computational molecules must be stored and places
an enormous demand on computational time and resources.
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