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Modified fractional-step methods for the
Navier-Stokes equations
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Abstract

Fractional step methods integrate the Navier-Stokes equations in
a non-iterative fashion. The commonly used P2 pressure correction
fractional step method introduces a second order in time error into
the solution as a result of the non-iterative approach. In this paper
two alternative fractional step methods are examined in which the
additional error is third order in time. One of the methods extends
the standard P2 method to increase the accuracy of the approximate
pressure included in the momentum equations, and is denoted the P3
method. The other method solves a Poisson pressure equation prior
to the solution of the momentum, and is denoted the pressure method.
Both alternative methods are shown to reduce the overall error and
increase the efficiency as compared to the standard method.
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1 Introduction

Fractional step projection methods integrate the Navier-Stokes equations in
time at each time-step by first solving the momentum equations using an
approximate pressure field to yield an intermediate velocity field that will
not, in general, satisfy continuity. A Poisson equation is then solved with
the divergence of the intermediate velocity as a source term to provide a pres-
sure or pressure correction, which is then used to correct the intermediate
velocity field, providing a divergence free velocity. The pressure is updated
and integration then proceeds to the next time step. Details of the range of
fractional step methods developed for the Navier-Stokes equations are given
in the references [9, 5, 11, 18, 10, 14, 17, 4, 7, 8, 16, 6, 2, 3]. The P1 method
sets the pressure field to zero in the momentum equation and the Poisson
equation is then solved for the new pressure, while the P2 method sets the
pressure in the momentum equation to that obtained at the previous time-
step, and the Poisson equation is then solved for a pressure correction. Both
the P1 method, with appropriate intermediate velocity boundary conditions,
and the P2 method provide second order in time accuracy for the velocity
and pressure fields, provided the momentum equation is integrated using a
second order accurate scheme [2, 3]. However both of these schemes still have
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an error that is approximately four times the magnitude of the equivalent
iterative scheme, as a result of the non-iterative fractional step approach.
Although the non-iterative schemes are still more efficient than the iterative
schemes, it is clear that a non-iterative scheme with equivalent error to the
iterative scheme would be preferable. In this paper two approaches are ex-
amined which increase the order of the fractional step error from second to
third order in time, reducing the magnitude of the error and considerably
increasing the efficiency of the fractional step methods.

2 Method

The governing equations are the Navier-Stokes equations in unsteady incom-
pressible non-dimensional form:

ut + (u · ∇)u = −∇P +
1

Re
∇2u , (1)

∇ · u = 0 , (2)

where u is the velocity, P the pressure and Re the Reynolds number.

The continuous equations are discretised using Adams-Bashforth for the
advective terms and Crank-Nicolson for the diffusive terms, giving the system

vn+1 − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gpn+1/2 +

1

2Re
L(vn+1 + vn) ,(3)

Dvn+1 = 0 , (4)

where (v, p) are the discrete velocity and pressure respectively, H is the dis-
crete advection operator, G the discrete gradient, L the discrete Laplace
operator and D the discrete divergence. This is a second order in time dis-
cretisation, using an explicit scheme for the advection terms and an implicit
scheme for the diffusion terms [11].
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The P2 fractional step projection method integrates this equation set by
first solving an approximate form of the momentum equations for v∗,

v∗ − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gpn−1/2 +

1

2Re
L(v∗ + vn) , (5)

This approximate velocity will not initially satisfy continuity. A correction
is then applied of the form

vn+1 = v∗ −∆tGπ , (6)

where π is a pressure correction, such that the resulting vn+1 does satisfy
continuity. An equation for π is constructed by substituting equation (6)
into the continuity equation (4) to give

Lπ = Dv∗/∆t .

Once π is obtained, the velocity is corrected and the pressure is updated
using the pressure correction as

pn+1/2 = pn−1/2 + π , (7)

and the integration proceeds to the next time step. The P2 method will not
in general provide an exact solution to the discrete equations, regardless of
the accuracy to which the individual equations are solved as, although the
velocity field is divergence free, the divergence free velocity field together
with the updated pressure will not satisfy the discrete momentum equations.
This resulting projection error has been shown for the P2 method to be [2],

∆t2Gpt . (8)

The error is seen to be second order in time, and thus is consistent with the
basic discretisation used for the momentum equations. The effect of this error
has been determined by comparing the P2 solution to an iterative solution,
where the momentum/Poisson pressure correction equations are repeatedly
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cycled through at each time-step until the solution satisfies both the mo-
mentum and continuity equations. The projection error has been shown to
increase the magnitude of the error by a factor of four times when compared
to that of an iterative scheme. Although the P2 scheme is still more effi-
cient than the iterative scheme as a result of its non-iterative form, it would
clearly be desirable to construct a non-iterative scheme with the same error
magnitude as that of the iterative scheme. In this paper two methods of
constructing non-iterative schemes with reduced error are considered. The
first is to improve the accuracy of the pressure used in the momentum equa-
tions by using a second order extrapolation to obtain p̃n+1/2, which is then
included in the momentum equations:

v∗ − vn

∆t
+

[
3

2
H(vn)− 1

2
H(vn−1)

]
= −Gp̃n+1/2 +

1

2Re
L(v∗ + vn) , (9)

with p̃n+1/2 = 2pn−1/2 − pn−3/2 . The pressure in the momentum equation is
now approximated to second order in time, which will result in the projection
error being third order and therefore in principle considerably reduced for
small ∆t. This method will be denoted the P3 method, after [7], where a
similar method was suggested without implementation.

An alternative method is also considered, whereby a pressure Poisson
equation is first constructed for the pressure by taking the divergence of the
momentum equations, setting the divergence of the n + 1 velocity occuring
in the time derivative to zero, and using a second order extrapolation for the
n + 1/2 time step velocity occuring in the viscous term, giving

Lpn+1/2 =
Dvn

∆t
−D

[
3

2
H(vn)− 1

2
H(vn−1)

]
+

D

Re
L(

3

2
vn − 1

2
vn−1) , (10)

at all fully interior points, while at boundary adjacent points the normal
component of the momentum equation lying on a boundary node is replaced
with the normal component of velocity at that point. Once the pressure is
obtained it is substituted into the momentum equations, which are solved
for the velocity, and the integration continues to the next time step. The
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resultant velocity and pressure will exactly satisfy the momentum equation,
while an error in the divergence will arise from the difference between the
Poisson pressure equation (10), and that constructed from the momentum
equations with the final velocity included. The only difference is that be-
tween the Crank-Nicolson discretisation of the viscous terms, used in the
final momentum equations, and the Adams-Bashforth discretisation used in
the pressure equation. As both these discretisations are second order in time,
the difference will be second order, and this will result in a third order in
time error in the divergence. In practice equation (10) is solved in pressure
correction form, with the n − 1/2 level pressure included on the right hand
side. This method is denoted the pressure scheme.

The above schemes are defined on the standard MAC staggered grid
using finite volumes. Results are presented below for natural convection flow
in a square cavity which requires fixed velocity boundary conditions. The
normal component of velocity, which has a node on the boundary, is set to
the required value at that boundary, while the tangential component, which
does not have a node on the boundary, has the average of the values at the
immediate interior and exterior nodes set to the required value. The normal
gradient of the pressure correction is set to zero at the boundary for all
methods. No explicit boundary conditions are required for the pressure. For
the iterative and P2 solvers the boundary conditions for the ∗ velocity field
are set to be the same as the physical boundary conditions, given above.

The equations are discretised using standard second-order central differ-
ences for the viscous terms, the pressure gradient and divergence terms. The
quick third-order upwind scheme is used to obtained face values for use in
the advective terms [12]. The momentum equations are inverted using an
adi scheme in which terms are shifted to the right hand side of the system to
enable a series of tridiagonal matrices to be inverted in each direction. The
terms shifted to the right hand side contain the latest available estimate for
the unknown, allowing the domain to be repeatedly swept until an accurate
solution is obtained. For all the methods tested four sweeps of the adi solver
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were used, where a single sweep consists of solving the series of tridiagonal
systems associated with each coordinate direction once. Four sweeps of the
solver gave solutions with residuals of less than 1 × 10−8 for all cases. A
preconditioned restarted gmres method is used to solve the pressure cor-
rection equations for all the methods. Other solvers, such as preconditioned
conjugate gradient, incomplete lu, adi and Jacobi have also been tested and
found not to affect the overall accuracy or relative performance of the meth-
ods. Of the solvers tested gmres was found to be the most efficient. The
number of sweeps of the gmres solver used varied with each of the methods
tested and with the time-step and convergence criterion prescribed. For the
non-iterative schemes for the smallest convergence criterion up to a hundred
sweeps were required while for the largest convergence criterion as few as five
were sufficient. For the iterative scheme the Poisson solver was limited to five
sweeps. For the iterative, P2 and P3 schemes at each time step the solution
was considered converged when the integral of the absolute divergence over
the domain was less than a pre-set value. The convergence is applied to the
iterative scheme after the solution of the momentum equations, with a mini-
mum of two momentum/Poisson pressure correction iterations required. For
the pressure scheme the pressure equation was considered converged when
the integral of the absolute residual over the domain was less than a pre-set
value.

3 Results

Results have been obtained for start-up natural convection cavity flow in
a square cavity. Initially the fluid in the square cavity is stationary and
isothermal at temperature T = 0 . At time t = 0 the left and right walls are
instantaneously heated and cooled to ∆T/2 and −∆T/2 respectively, with
the top and bottom boundaries adiabatic. All boundaries are no-slip. The
control parameters for this flow are the Rayleigh number Ra and the Prandtl
number Pr. The Rayleigh number Ra = gα∆TH3/νκ , with g gravity, α the
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coefficient of thermal expansion, H the height of the cavity, ν the kinematic
viscosity and the diffusivity κ = ν/Pr . The results presented were obtained
with Ra = 6× 105 and Pr = 7.5 .

The two dimensional equations are used with x the horizontal co-ordinate,
U the corresponding horizontal velocity component, y the vertical coordinate
and V the corresponding vertical velocity component. The natural convection
flow requires the inclusion and solution of a temperature equation, in addition
to the Navier-Stokes equations. The temperature equation is solved using
Adams-Bashforth and Crank Nicolson schemes in exactly the same manner
as the momentum equations, and for brevity is not presented. Further details
of the natural convection flow may be found in Patterson and Armfield [13]
and Armfield and Patterson [1], and for brevity will not be presented here.

A 50×50 uniform mesh has been used. The 50×50 solution was compared
to that obtained on a 200× 200 mesh and the variation was found to be less
than one percent. The 50 × 50 mesh is therefore considered to provide a
sufficiently accurate resolution for this flow. To test the behaviour of the
methods the flow was integrated from t = 0 to t = 2 for time-steps in the
range ∆t = 0.003125 to 0.1, and the ‘error’ expressed as the L2 norm of the
difference between a test solution obtained at a given ∆t and a benchmark
solution obtained with a time step of ∆t = 7.8125×10−4, also integrated from
t = 0 to t = 2 . Times have been non-dimensionalised using the boundary
layer start-up time for the natural convection cavity. Total time to steady
state for the cavity is orders of magnitude greater than the boundary layer
start up time. The maximum time step selected, ∆t = 0.1, was chosen to be
near to the empirically obtained stability limit of ∆t = 0.2 for all methods.

For the P2, P3 and iterative methods at each time step results have been
obtained with convergence criterion ranging from 1.0 × 10−4 to 1.0 × 10−9

in order-of-magnitude steps. The solution was considered converged at each
time step when the integral over the domain of the absolute residual of the
continuity equation was less than the convergence criterion. In this way it
was possible to determine which was the appropriate convergence criterion
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for each method and time step to ensure that as accurate as possible a so-
lution was obtained. The results presented are those for which a further
reduction of the convergence criterion by an order of magnitude led to a
less than one percent change in the solution accuracy. This degree of ac-
curacy was obtained with different criteria for each method and each time
step, ranging from 1 × 10−4 for the P2 method with time step ∆t = 0.1 to
1 × 10−9 for the iterative method with time step ∆t = 0.003125. For the
iterative method each integration of the Poisson pressure correction equa-
tion was halted after five iterations of the gmres procedure, regardless of
the accuracy of the solution at that stage of integration. The divergence test
is applied to the iterative method after the momentum equations have been
solved, and it was required that at each time step at least two iterations of
the momentum/pressure correction cycle were carried out, regardless of the
divergence after the first solution of the momentum equations. For the pres-
sure method the convergence criteria is applied to the pressure equation by
integrating the absolute residual of equation [8] over the domain. Solutions
were obtained for the pressure method for a range of convergence criteria. It
was found that for all time-steps tested a criteria of 1.0× 10−4 gave an error
that varied by less than one percent.

Figure 1 contains the error plotted against the time step for the itera-
tive, P2, P3 and pressure methods, with the error being the average of the
pressure, U , V and temperature errors. A correct representation of the pres-
sure error, which for these schemes requires extrapolation to the n + 1 time
step location, as shown in Armfield and Street [3], has been used here. The
increased magnitude of the P2 projection error, when compared with the it-
erative scheme, is apparent. For both the P3 and pressure methods the error
is almost identical to the iterative scheme. Clearly both of the new schemes
have negligible additional error.

Figure 2, which contains plots of the error against cpu time, demonstrates
the comparitive efficiency of the schemes. The relatively poor efficiency of the
iterative scheme is seen, with the P2 scheme being more efficient, even though



3 Results C373

0.001 0.01 0.1
∆t

1e-08

1e-07

1e-06

1e-05

0.0001

0.001
E

rr
or

Iterative
P2
Pressure
P3

Figure 1: Comparison of accuracy for the iterative, P2, pressure and P3
methods
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Figure 2: Comparison of efficiency for the iterative, P2, pressure and P3
methods
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for a given time step size the error is larger. The P3 and pressure schemes
are significantly more efficient than both the P2 and iterative schemes, with
equivalent performance. The new schemes require half the cpu time of the
iterative scheme, and 60% that of the P2 scheme, to achieve an equivalent
error.

The divergence error for the pressure scheme has also been monitored, and
was found to range from 3.2× 10−6 for the largest time step, to 8.6× 10−11

for the smallest time step, with a ∆t3 variation. An accurate solution of the
pressure equation therefore ensures a small divergence error.

4 Conclusions

Both the P3 and pressure schemes are clearly more efficient than the P2
and iterative methods. In particular the new schemes have almost entirely
eliminated the error associated with using a non-iterative scheme for the flow
considered here. The improved accuracy has been achieved by including an
additional extrapolation, of the velocity in the viscous terms for the pres-
sure method and of the pressure for the P3 method. Empirical tests have
shown that these extrapolations do not adversely affect the stability of ei-
ther method, with the largest stable time step size being the same for all
four methods. This may be compared with using a P2 method with Adams-
Bashforth extrapolation for the viscous terms, where the stable time step
is 0.025, an order-of-magnitude less than that of the schemes tested here.

There is clearly little to choose between the P3 and pressure methods,
however it is noted that for the P3 method optimal results require setting
a different convergence criterion for each time step size, whereas for the
pressure method the optimum convergence criterion is the same for all time
step sizes. It is also noted that in [15] an analysis of a P3 method, similar to
that used here, was carried out and it was shown that such a scheme could
lead to solutions unbounded in time. Although the empirical tests carried
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out here have not shown this instability, this is a possible problem with the
P3 method.
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