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A method for studying the influence of
intra-seasonal variability on the inter-annual

variability of climate fields
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Abstract

A computational technique is proposed for studying patterns of
interannual variability of climate seasonal means that arise from in-
traseasonal variability. The method, using monthly means of climate
data, is more computationally efficient than other current methods
that use daily means to estimate the spatial covariability of the in-
traseasonal component. Removing this component, it is possible to
estimate the long-range potentially predictable patterns of climate
variability. The method is applied to a study of the Southern Hemi-
sphere winter circulation and compared with a method using daily
data to show that the results are very similar.
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1 Introduction

The potential for long-range (in advance of three months) predictability of
regional or global climate is often predicated on a knowledge and under-
standing of the interannual variability of seasonal means of climate fields.
Even for seasonal means, a significant proportion of the interannual variabil-
ity can be attributed to internal dynamical processes which are inherently
unpredictable, on the seasonal time-scale, and are related to the weather
within the season. Thus, a common theoretical framework is to consider a
decomposition of the temporal variability into an unpredictable part called
the “weather noise” variability and a part which is assumed to be at least
potentially predictable [4, 2, 5, 6, for example]. This latter component is
more likely to be related to external forcings (such as, for example, sea sur-
face temperature anomalies, sea-ice anomalies, varying greenhouse gas con-
centrations) and very low frequency (interannual to supra-annual) internal
atmospheric variability which are themselves potentially predictable.

Recently, Frederiksen et al. [2] proposed a method for extracting spatial
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patterns of interannual variability associated with both the weather noise
and potentially predictable components of seasonal mean time series. Their
method uses daily time series within each season, over many decades, to
approximate the spatial covariance matrix for the weather noise component.
From this covariance matrix the spatial patterns can be derived using a stan-
dard Principal Component (pc) analysis (see Appendix A for a summary of
the pc analysis technique or [3] for a detailed description). The potentially
predictable patterns can then be derived from a pc analysis applied to a resid-
ual covariance matrix, which is the difference between the total covariance
matrix, based on the seasonal means of the climate data, and the weather
noise matrix.

In brief, Frederiksen et al. [2] assume that, after removing the mean an-
nual cycle, a daily climate anomaly xyt(r) can be represented as

xyt(r) = µy(r) + εyt(r) , (1)

and the seasonal mean anomaly as

xyo(r) = µy(r) + εyo(r) . (2)

Here: y = 1, . . . , Y is the year; t = 1, . . . , T is the day in a season of length
T days; r = 1, . . . , R denotes a location in a field with R locations; µy(r) rep-
resents the potentially predictable component; εyt(r) represents daily weather
noise, modelled here as the residual daily departure of xyt(r) from the sea-
sonal value µy(r) . The set {εyt | t = 1, . . . , T} is assumed to represent a
stationary normal stochastic process in time with mean zero and to be sta-
tistically independent and identically distributed with respect to year y. An
average over any index will be represented by a circle. Thus, in Equation (2),
xyo(r) is an average over T days, and xoo(r) is an average over T days and
Y years. The symbol V will be used to denote the covariance of two variables.

Frederiksen et al. [2] show that the covariance V (εyo(r1), εyo(r2)) of sea-
sonal weather noise between two locations r1 and r2 can be estimated by
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.

(3)
The covariance V (xyo(r1), xyo(r2)) of the seasonal mean anomaly, which we
will refer to as the total covariance matrix, can be estimated by the sample
covariance

V (xyo(r1), xyo(r2)) =
1

Y − 1

Y∑
y=1

[xyo(r1)− xoo(r1)] [xyo(r2)− xoo(r2)] . (4)

Thus, from Equation (2), a residual covariance matrix can be defined as

V (xyo(r1), xyo(r2)) − V (εyo(r1), εyo(r2)) = V (µy(r1), µy(r2))

+ V (µy(r1), εyo(r2)) + V (µy(r2), εyo(r1)) . (5)

When µy(r) and εyo(r) are independent, the residual matrix reduces to
V (µy(r1), µy(r2)), the covariance matrix for the potentially predictable com-
ponent. Even when this is not the case, the spatial patterns associated with
the residual covariance matrix can be shown to be more potentially pre-
dictable than those from the total covariance matrix, because the weather
noise component has been largely removed. Equations (3–5) can be used
to construct the corresponding covariance matrices from which the spatial
patterns can be derived using pc analysis.

The crucial step is the estimation of the covariance V (εyo(r1), εyo(r2)).
In this paper, we propose a simpler method using only monthly data. This
is possible because the power spectrum of large-scale atmospheric motions
is fundamentally red [6]. Consequently, a non-zero seasonal mean of the
weather noise is largely contributed to by intra-seasonal weather events with
monthly or longer time scales, including such phenomena as persistent block-
ing events in the extratropics and the Madden-Julian Oscillation in the trop-
ics. In other words, the seasonal mean operator is a very effective filter of
the higher frequency daily weather events such as midlatitude storms.
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There are a number of reasons why a method using monthly means is
desirable. Firstly, it is computationally more efficient, dealing with only
3 monthly means for a typical season, compared with 90 daily means. Also,
the estimation in Equation (3) requires an assumption of normality for the
daily time series. This will not be true for many meteorological variables.
Finally, the availability of daily time series is limited in comparison with that
of monthly time series.

2 Methodology

A monthly anomaly xym(r) is represented by the simple linear model [6]

xym(r) = µy(r) + εym(r) , (6)

where, m (1, 2, or 3) denotes a month within a given 3 month season, and
εym(r) the intraseasonal weather noise. The other indices and variables have
the same meaning as for Equation (1). The annual cycle for monthly data
has been estimated using the method of [1]. Equations (2), (4) and (5) also
hold with the understanding that the average over the day index is replaced
by an average over the 3 months. The vector eT (r) = (εy1(r), εy2(r), εy3(r))
is assumed to comprise a stationary and independent annual random vector.
The linear regression form (Equation (6)) implies that month-to-month fluc-
tuations, or intra-seasonal variability, arise entirely from e(r) (for example,
xy1(r)− xy2(r) = εy1(r)− εy2(r)).

An estimate of V (εyo(r1), εyo(r2)), using monthly means, can be made
with the following assumptions. Since the daily time series of a climate
variable, within a season, is in general assumed to be stationary, so are the
monthly statistics. In particular, the covariance between two locations is
assumed to be independent of months. That is,

V (εy1(r1), εy1(r2)) = V (εy2(r1), εy2(r2)) = V (εy3(r1), εy3(r2)) . (7)
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The same is assumed to be true for the inter-monthly covariance, such that,

V (εy1(r1), εy2(r2)) = V (εy2(r1), εy3(r2)) . (8)

Also, because daily weather events are unpredictable beyond a week or two,
we assume that the intraseasonal components are uncorrelated if they are a
month or more apart. That is,

V (εy1(r1), εy3(r2)) = 0 . (9)

With the assumptions in Equations (7–9),

E
(
e(r1)e

T (r2)
)

+ E
(
e(r2)e

T (r1)
)

= 2α

 1 β 0
β 1 β
0 β 1

 , (10)

where E denotes the expectation value based on all years and

α = V (εym(r1), εym(r2)) , m = 1, 2, 3 , (11)

and

β =
1

2α
[V (εy1(r1), εy2(r2)) + V (εy1(r2), εy2(r1))]

=
1

2α
[V (εy2(r1), εy3(r2)) + V (εy2(r2), εy3(r1))] . (12)

Following [6], we constrain α to lie within the interval [0, 0.1] in order to
reduce the estimation error. Using Equations (11–12),

E

{(
εy1(r1)− εy2(r1)
εy2(r1)− εy3(r1)

)(
εy1(r2)− εy2(r2)
εy2(r2)− εy3(r2)

)T
}

+ E

{(
εy1(r2)− εy2(r2)
εy2(r2)− εy3(r2)

)(
εy1(r1)− εy2(r1)
εy2(r1)− εy3(r1)

)T
}

= 2α

(
2− 2β 2β − 1
2β − 1 2− 2β

)
. (13)
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From Equation (6), xy1(r) − xy2(r) = εy1(r) − εy2(r) and xy2(r) − xy3(r) =
εy2(r)− εy3(r)). Therefore, the left hand side of Equation (13) can be eval-
uated using the given data xym(r). Hence, solving for α and β

α = a + b , (14)

and

β =
a + 2b

2 (a + b)
, (15)

where

a =
1

2

{ 1

Y

Y∑
y=1

[xy1(r1)− xy2(r1)] [xy1(r2)− xy2(r2)]

+
1

Y

Y∑
y=1

[xy2(r1)− xy3(r1)] [xy2(r2)− xy3(r2)]
}

(16)

b =
1

2

{ 1

Y

Y∑
y=1

[xy1(r1)− xy2(r1)] [xy2(r2)− xy3(r2)]

+
1

Y

Y∑
y=1

[xy2(r1)− xy3(r1)] [xy1(r2)− xy2(r2)]
}

(17)

Using these estimates for α and β in Equation (10),

1

2
[V (εy1(r1), εy2(r2)) + V (εy1(r2), εy2(r1))]

=
1

2
[V (εy2(r1), εy3(r2)) + V (εy2(r2), εy3(r1))]

= αβ . (18)

Thus, taking into account assumption Equation (9), an estimate for the co-
variance of the intraseasonal weather noise at locations r1 and r2, using
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monthly data, is

V (εyo(r1), εyo(r2)) =
1

2
[V (εyo(r1), εyo(r2)) + V (εyo(r2), εyo(r1))]

=
1

18

3∑
m,n=1

[V (εym(r1), εyn(r2)) + V (εym(r2), εyn(r1))]

=
α(3 + 4β)

9
. (19)

In the next section, we show that using either Equation (3) or Equation (19)
gives very similar results.

3 Example

Here, we apply both methods (Equation (3) and Equation (19)) to a study
of the Southern Hemisphere (sh) wintertime (June-July-August (jja)) at-
mospheric circulation. The data we use is the 500 hPa geopotential height
taken from the National Centers for Environmental Prediction (ncep) and
National Center for Atmospheric Research (ncar) re-analysis data. This
field effectively gives the height of the 500 hPa pressure level and is often
used to study spatial patterns, or teleconnections, of interannual variability
in the atmospheric circulation. The data runs from latitude 90◦S–20◦S on a
5◦ × 5◦ latitude/longitude grid and is for the period 1958–1996.

Figure 1 shows the first four dominant intraseasonal weather patterns
using both daily (left column) and monthly (right column) data. Both sets
of patterns are remarkably similar with only subtle differences reflected in
high pattern correlations of 0.99, 0.98, 0.93 and 0.93 for patterns 1–4, re-
spectively. Using either Equation (3) or Equation (19) in Equation (5) for
the residual matrix, also produces remarkably similar potentially predictable
patterns (Figure 2) with similar high pattern correlations of 0.99, 0.99, 0.94
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Figure 1: The first four dominant jja patterns of the intraseasonal com-
ponent of sh geopotential height variability using daily data (left column)
and monthly data (right column). The percentage of the total intraseasonal
weather variability explained by each pattern appears in brackets.



3 Example C387

Figure 2: The first four dominant jja patterns of the potentially predictable
component of sh geopotential height variability using daily data (left column)
and monthly data (right column) The percentage of the total potentially
predictable variability explained by each pattern appears in brackets.
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and 0.92 for patterns 1–4, respectively. The differences are due to sampling
errors (daily versus monthly) and estimation errors (Equation (3) versus
Equation (19)). Clearly, these are not large.

4 Conclusions

We have proposed and examined a technique for extracting weather noise
patterns of interannual variability from meteorological seasonal mean fields.
The technique uses monthly mean, as opposed to the currently used daily,
data to estimate the covariance of the weather noise component at two dif-
ferent geographical locations. The method is more computationally efficient
and relies on the fact that the major contribution to the seasonal mean of
the weather noise component is from weather events at the monthly or longer
time scales, that is, intraseasonal phenomena. The dominant intraseasonal
patterns of the sh wintertime circulation derived from this method and one
using daily data are essentially the same, with minor differences due to sam-
pling and estimation errors. This is also true of the potentially predictable
patterns of interannual variability, derived after the removal of the intrasea-
sonal variability.

A Principal component analysis

Here we provide a brief summary of the pc analysis technique used to produce
spatial patterns of variation from a given covariance matrix. The interested
reader is referred to [3] for more details.

Let uy = {ury | r = 1, . . . , R} (y = 1, . . . , Y ) be a multivariate column
vector of data at R locations, in a given year y of Y years and with sample
covariance matrix V. That is, it represents R time series of length Y years.
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A pc analysis seeks to define another vector wy = {wpy | p = 1, . . . , R}
(y = 1, . . . , Y ) with

wpy =
R∑

r=1

cprury = cT
p uy (20)

defined as the pth pc whose sample variance can be shown [3] to be cT
p Vcp.

The pcs are chosen in such a way as to maximize their sample variance with
the largest variance assigned to the first pc, the second largest variance to
the second pc and so forth. If the coefficients cp are constrained so that

cT
p cq =

{
1, p = q ,
0, p 6= q ,

(21)

then it can be shown [3] that this can be achieved by solving the eigen-
problem

Vc = λc , (22)

with the eigenvalues λp giving the sample variances of the pcs and the eigen-
vectors (cp) providing the coefficients in Equation (20). The eigenvectors
also provide the spatial patterns of variability and are sometimes referred to
as “empirical orthogonal functions”.
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