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A new way of estimating radar pulse intercepts
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Abstract

The aim of the paper is to give some useful estimates for radar
pulse intercept times when emitter and receiver parameters are given
as some multiple of a basic unit of time. The scan of the emitter (that
is, the main beam when the emitter is rotating) and the frequency
scanning receiver are modelled as periodic on/off window functions.
We are interested in the time required for these two periodic functions
to coincide. We provide an algorithm that rapidly produces accurate
maximum and mean time estimates to first radar pulse coincidence
for those phases that lead to intercept. The algorithms presented are
much faster and less computationally intensive than simulation, and
may prove a useful tool for electronic support applications.
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1 Introduction

In Electronic Support (es), a key operational requirement is the ability to
detect or intercept users of the electromagnetic spectrum in the shortest pos-
sible time (which we call emitters or radars [3]). Furthermore, the times
at which a radar intercept receiver is dwelling on any particular frequency
is often periodic. The period is called the sweep period of the receiver. In
addition, the main source of periodicity in emitters is the scanning pattern
of its main beam, either through mechanical movement of the antenna or, in
more modern and sophisticated emitters, through electronic ‘beam steering’.
For instance, a very common configuration for an emitter is to have a me-
chanically rotated antenna which rotates continually at a constant angular
velocity through 360◦. Hence, if the times at which the main beam of the
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emitter is facing the receiver are periodic and, is at the same time emitting
Radio Frequency (rf) pulses, then this period is known as the scan period
of the emitter. As the emitter is rotating and as it approaches the receiver’s
field of view, the later will have a certain amount of time to intercept the
emitter, before it rotates away from the receiver’s line of sight. Hence, in
this paper, we can model this receiver/emitter problem as the interaction
between two independent periodic window functions.

However, in detecting emitters, the receiver may encounter a synchroni-
sation problem due to the inherent periodicities of the interacting window
functions. Synchronisation is defined as a situation in which two or more
recurrent events occur in such a way that the pattern of their coincidences is
periodic. When this occurs, either the receiver detects energy from an emit-
ter very frequently, in which case, this is no problem; or not at all, which is
a problem for an es receiver. The results here show that our algorithm for
pulse interception is much faster than simulation and that the only approx-
imation is in the model itself. This is especially useful when dealing with
large sweep and scan periods. In Section 2, we describe the mathematical
problem and its application to es; in Section 3, we give some background
reference on the problem of synchronisation; in Sections 4 and 5 we discuss
our approach to quickly evaluating times to interception in discrete time us-
ing some number-theoretic tools; in Section 6 we provide and discuss these
results; and finally, in Section 7 we provide some concluding remarks.

2 Application of window functions to radar

pulse intercept problem

Consider two independent on/off periodic window functions. Define Ti as
the period of an on/off function, and τi as the time the function is on.
Further, we define an intercept to occur when the two window functions are
simultaneously on. Now, let us consider the special case when τ1 = Kτ ,
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Figure 1: Two independent periodic window functions.

τ2 = Jτ , K, J ∈ Z+, where Z+ is the set of positive integer numbers and
τ is some basic unit of time. Suppose that we can also express the periods of
the two window functions as multiples of τ , that is, T1 = Mτ and T2 = N τ ,
where, of course M ≥ K , N ≥ J and M,N ∈ Z . φ is the relative phase
between the two window functions. It is the difference in time between the
midpoints of the first window of each window function.

Further, we will define the initial phase separation as TΦ = rτ = pT1 −
qT2 , where p, q are positive integers and r = pM−qN ; and is the time from
the start of the first window function when it is first on to the start of the
second window function when it is first on. This notation follows in spirit
that of [3]. Using the theory of linear congruence, for a given TΦ we then
estimate the time of window coincidence. That is, pT1, where pT1 = TΦ+qT2 .
In particular, we are interested in obtaining the maximum and mean times
to intercept between two such periodic window functions over all possible
discrete phases.
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Coinciding window functions have obvious applications to the receiver and
emitter pulse coincidence problem [1, 2]. For this paper, assuming that the
emitter’s radio frequency (rf) is constant and within the receiver’s frequency
range, we can think of T1 as the period of the frequency scanning receiver
(or as the time required for the receiver to pass through its frequency range),
τ1 is the dwell time of the receiver in a given band that contains the emitter’s
rf value, and T2 as the “scan” period of a circular rotating emitter (the latter
being the more interesting problem).

The periodic window function notation is still retained for the rotating
emitter, where we now define τ2 and T2 respectively, are T2 = 360

S
and τ2 = λ

S
,

with S being the emitter rotation rate, in degrees/second, and λ is the emitter
beamwidth in degrees [3]. That is, τ2 is the beamwidth in units of time and
T2 is the emitter rotation period.

3 Synchronisation between periodic window

functions

Previous unpublished work by one of the authors applied the concept of coin-
cident window functions to the problem of synchronisation between periodic
events [2] and this is now briefly described. First, note that it is possible,
depending on Ti and τi, for two on/off window functions to never intercept.
This is an aspect of synchronisation. An obvious example is when T1 = T2

and τ1 + τ2 < T1 , interception will occur every T1 period or not at all, de-
pending on φ. In our discrete time model, such synchronisation is possible
whenever D = gcd(M,N ) ≥ 2 . For more details on synchronisation and its
effects see [2].
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4 Time to intercept for the elementary case

Of course, in es, we do not have the luxury of being able to just choose
another known phase as given by linear congruence. Instead, we have to
take the values given by all possible phases to establish some mean and
maximum times to intercept values. A quick way of computing all the times
to interception for all the different phases is to perform the following. First,
compute t1. Next, to compute t2, note that after t1 time has elapsed, the
relative phase will be φ = 1 . Thus, t2 = t1 + t1 . Then, to compute t3 note
that after a time of t2, the relative phase will be φ = 1 and so t3 = t2 + t1 .
Thus, in general, for τ = 1 = τ1 = τ2 , i = 2, . . . , M

D
− 1 , D = gcd(M,N ),

we have

ti = (ti−1 + t1) mod
T1T2

D2
, (1)

and with tM/D = T1T2/D
2 . And note that the modulus comes from the fact

that by the linear congruential method, the time to intercept has to have an
upper bound of T1T2/D

2.

5 Mean and maximum time to first pulse

coincidence

In this section we deduce the mean time to interception, but only for those
phases where interception is possible. Now, we wish to determine the mean
time to first intercept for the general case—that is, when τ1 = Kτ , τ2 =
Jτ . This would simply improve our average interception time by a factor
of K +J − 1, according to Random Phase Theory (rpt) [1]. In essence, rpt
is where the window of one function always intercepts the other function
regardless of the phase. The subtraction of 1 is explained by the fact that
for pulse interception we want, at least, the stronger condition of overlap of
pulses rather than the weaker “common edge” for pulse detection.



5 Mean and maximum time to first pulse coincidence C454

We remark that in practice, we should always be able to pick a basic unit
of time common to both the emitter and receiver, for example, 1 millisecond,
1 nanosecond, etc. We could then let this be τ . All other measurements
(τ1, τ2, T1, T2) would then be multiples of τ . If our average interception time
is T1, then

T1 ≈
T

(K + J − 1)
, (2)

where T is the sum of all times to interception for all possible phases in
the elementary case. Note that we have used ≈ in (2) since the “random
phase theory” will not be strictly valid in the case of two periodic window
functions that we are considering here. rpt states that for two random
periodic window functions then the time taken for both to be simultaneously
on will be T /(K + J − 1).

In the case where our receiver is sweeping so slowly such that τ1 + τ2 ≥
M− 1 , then it is obvious that for any phase, its time to interception will be
less than or equal to T1. Further, on closer examination, the ti’s would be

ti =


i : 0 ≤ i < J − 1
N : J ≤ i < M

D
− 1−K

M
D
− 1 : M

D
−K ≤ i ≤ M

D
− 1

T1T2

D2 : i = T1

D
.

Our mean time to pulse interception then becomes

T1 =
D

(
J(J−1)

2
+N

(M
D
− 1− (J + K)

)
+ K

(M
D
− 1

)
+ T1T2

D2

)
(M+ D)

. (3)

We also note that our number of intercepts is directly related to |r|. As
such, if P is the fraction of all possible phases that result in interception,
and D > 1 then

P = min

(
1,

D(K + J − 1)

M

)
. (4)
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Note the strong similarity to the results in [2, 1]. Thus, regardless of the
phase, our time to interception, t, will be given by the following upper bound,
which is tight only for K = J = 1 ; for τ1 = τ2 = 1 ,

t ≤
(

T1T2

D2

)
. (5)

We note that the upper bound for maximum time to first coincidence does
not include the K or J terms. Work is ongoing to produce a general tight
bound dependent on K and J .

There is also the situation where theoretically we are guaranteed inter-
cept over all phases, but we can still experience “short term” or “near”
synchronisation. To investigate this further, we define two numbers to be
Approximately Small Integer Related (asir) when T1/T2 ≈ I1/I2, where
I1, I2 ∈ Z+ are relatively small and coprime. In this context, we have yet to
determine exactly what ≈ entails. That is, how close should T1/T2 be to a
division of two coprime integers?

For example, suppose that T2/T1 ≈ 1, that is, T1 : T2 = 1 : 1 + ε ,
0 < ε � 1 . If the initial phase (which we never know) is reasonably close
to 0, then, depending on τ1+τ it may take a very long time before interception
takes place. In this case, there is “near” synchronisation because although
there will eventually be interception, this will take a very long time.

The challenge before us is to formulate an algorithm to obtain useful
intercept times using minimal computation. The solution to the problem
when τ1 = τ2 = τ is straightforward. Now, we use these solutions to provide
us the answer when τ1 = Kτ , τ2 = Jτ , and in a very efficient manner.
Suppose that the times of interception for the trivial case are

0, t1, t2, t3, . . . , t|r|−1 . (6)

If in the trivial case, the phase was 1, there would now be intercept at t = 1 .
Indeed, for the more general case, if τ1 = Kτ , then our times of interception
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Figure 2: effect of varying window widths and periods.

will be guaranteed (and greatly reduced) for phases 0 to K − 1 . That is,

t0 = 0 , t1 = 1 , . . . , tK−1 = K − 1 . (7)

We think of the general case as the addition of K − 1 receiver window func-
tions and J − 1 emitter window functions respectively. This is represented
by Figure 2. However, now we have a lot more window function pairs to con-
sider. But, the calculations are not as daunting as they might appear. From
above, assuming that N < M (otherwise, it is merely a symmetric case), if
we consider the time of interception for phase r in the trivial case, then for
arbitrary T1 and T2 we simply have to make K + J elementary comparisons,
as in Figure 2. As such, our new time to intercept would then be

tr = min(t′r−K+1, . . . , t
′
r, . . . , t

′
r+J−1) , (8)
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where if r + J − 1 > M/D then r + j− 1 = (r + J − 1) mod M/D and t′i is
the time to interception for phase i for the trivial case.

Note that there is a simple way to considerably reduce computation here.
After computing tr, calculating the remaining intercept times merely becomes
simple comparison. For instance, following from above

tr+1 = min(t′r−K+2, . . . , t
′
r, . . . , t

′
r+J) .

However, we already know the minimum value between the phases r−K +2
and r + J − 1 . And so for the rth phase, our time to interception

tr = min(tr−1, t
′
r+J−1) . (9)

Of course, there is one glaring exception—if tr = min
(
t′r−K+1, t

′
r, . . . , t

′
r+J−1

)
happened to be t′r−K+1, then it is obvious that we can not use (9) to com-
pute tr+1. Instead we would have to use (8). Further, to initialize the process,
we will also have to use (8) to compute tK . In addition, another small thing
to consider is: if we find that when we are computing our “new” times to
interception (from the trivial case values), we get the same value more than
J times (potentially, we could have K +J−1) then from after the Jth equiv-
alent value we increment our time to intercept by 1 from the previous value.
We remark that all these values are valid for any T1 and T2 when T1 < T2 ; and
since the operations are symmetric, then it is a trivial exercise to determine
times to interception in the cases where T1 > T2 .

6 Algorithm and some computational

examples

Define τ1, τ2 as in the previous section. Let T1 = Mτ , T2 = N τ . We
now give a summary of the algorithm for determining the average time to
intercept.
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1. Calculate D = gcd(M,N ).

2. For r = 1, determine t1 and then find ti = (ti−1 + t1) mod (T1t2/D
2),

for i = 2, . . . ,M/D − 1 and tM/D = T1T2/D
2 .

3. If T1 : T2 is not asir, then compute T1 = T /(K + J − 1) (where T is
the sum of all times of interception for all phases when τ = τ1 = τ2)
the average time to interception over all phases, else compute

T1 = D

(
K(K−1)

2
+ T1T2

D2 + tK +
∑max(M,N )

D
−1

i=K+1 ti = min(ti−1, t
′
i+J−1)

)
max(M,N ) + D

.

4. If there is no intercept for any given phase before T1T2/D
2 we have

synchronisation by the linear congruential method, first mentioned in
Section 4. This could be theoretically overcome by settingM such that
gcd(M,N ) = 1 , assuming, of course, we know M.

We also provide a table with some generic artificial examples, where T1, T2,
τ1, and τ2 are as defined previously, with τ = 1 . Alg Run is the running
time taken to calculate the times to intercept using the algorithm developed
in the paper. Sim Run is the running time taken to calculate the times to
intercept using a full model simulation. This simulation was also created
with MatLab and comprised of comparing two window functions. A window
function would take the value 0 when it was off and 1 when it was on. An
interception was deemed to occur on the first instance the two functions were
simultaneously 1.1 Alg Mean is the mean time to interception and Alg Max
is the maximum approach time to interception respectively for the algorithm.
Notice the significant decrease in running times between the algorithm and
simulation. Note also mean/max ≈ 0.3–0.4 confirming the presence of “near”
synchronisation for at least one of the phases to be considered. This is

1Although this simulation has never been published, the authors may provide further
details upon request.
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Table 1: Synthetic but realistic numerical examples. Note: En means ×10n.
T1 T2 τ1 τ2 Alg (s) Sim (s) Alg(ms)

(ms) (ms) (ms) (ms) Run Run Mean / Max
1297 3800 210 95 0.34 41.9 1.97E4 / 4.56E4
1057 4330 109 187 0.45 36.5 1.52E4 / 3.80E4
1231 2700 59 90 0.18 41.0 1.64E4 / 5.66E4
1031 2900 59 45 0.29 36.3 1.69E4 / 4.64E4
2183 3570 401 125 0.33 24.6 8.29E3 / 2.65E4

because if most of the time to intercept values are smaller than 1/2 Max,
then that means that the largest time to intercept is ‘relatively’ high when
compared to the other values.

We remark that the running times given are in seconds, and calculated us-
ing Matlab 6.5.0.1809113a Release 13, on a 1.5GHz Pentium IV. These times
could most likely be improved significantly using a lower level language such
as C. An interesting point is to understand the reason for the link between
cases involving elementary and arbitrary pulse widths. Essentially, the reason
for this is that irrespective of the window widths, by using some basic num-
ber theoretic tools to calculate the times to interception for the elementary
case and then by making specific comparisons between those same values, we
can determine the times to interception for arbitrary window widths. That is,
from Figure 2, we could think of functions with arbitrary window widths as
merely the addition of elementary window functions. The problem of time to
interception then becomes one of comparing these elementary window func-
tions and finding the minimum time to intercept. The algorithm produces
the exact same answers as simulation so the only approximation is in the
discrete model itself. That is, this algorithm is deterministic because it deals
with time in a discrete sense. However, since time is obviously constant, then
in practice, this algorithm might lead to some small errors, but only due to
the discrete assumption of time, not the algorithm itself.
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7 Conclusion

Our algorithm presented for times to radar pulse coincidence are fast and
accurate, and may prove a useful tool for Electronic Support applications.
We have presented a fast and efficient algorithm for calculating the mean
and maximum times to intercept for the rotating rf emitter and frequency
scanning receiver problem. Furthermore, we have calculated the fraction of
emitter windows/scans that will be intercepted, averaged over all phases. We
note that there is an interesting scenario where in some cases, the coprimality
of the period of the frequency scanning receiver and the “scan” period of a
circular rotating emitter may, in fact, not always be to our benefit. That
is, the time to first intercept may still be unreasonably large, even if inter-
cept is guaranteed. Future research could perhaps concentrate on expanding
the applications of number theory and statistics in the Electronic Support
emitter/receiver problem, so that we can intercept “everything” within a
reasonable amount of time.
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