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A diffusion–modified quadrature finite element
method for nonlinear reaction–diffusion

equations
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Abstract

In this work we propose, analyse and implement a fully discrete
diffusion–modified H1-Galerkin method with quadrature for solving
nonlinear variable diffusion coefficient reaction–diffusion equations on
a rectangular region. In our least square quadrature finite element
method, the trial space consists of twice continuously differentiable
cubic or higher degree splines and the test space is obtained by ap-
plying the second order diffusion operator to the trial space. At each
discrete time step, our algorithm requires solution of only a constant
diffusion coefficient fully discrete linear problem. We prove that for
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sufficiently small time step-size, the scheme is stable and converges
with optimal order accuracy in time and space (with H1 or H2 norm).
Finally, we present numerical results demonstrating the accuracy of
our scheme in L2, H1 and H2 norms.
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1 Introduction

We consider the nonlinear reaction–diffusion equation for the field u(x, y, t):

∂u

∂t
− a(x, y, u)∆u = f(x, y, t, u) , (x, y, t) ∈ Ω× [0, T ] , (1)

u(x, y, 0) = g(x, y) , (x, y) ∈ Ω̄ , (2)

u(x, y, t) = 0 , (x, y, t) ∈ ∂Ω× [0, T ] , (3)

where Ω = (0, 1)× (0, 1) . Here, f , representing the effect of nonlinear reac-
tion, is defined on Ω× [0, T ]× R ; the diffusivity of the media a (depending
nonlinearly on the unknown u, for example chemical concentration in bio-
logical applications) is defined on Ω × R and the initial data g is defined
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on Ω̄. As usual, we assume the positivity and boundedness of the diffusion
coefficient: 0 < amin ≤ a ≤ amax for some constants amin and amax.

In this paper, we seek twice continuously differentiable approximate so-
lutions (that are fourth and higher–order accurate in space) of the second
order nonlinear problem (1–3). In addition, we want to analyse the stabil-
ity and convergence of a computer implementable (fully discrete) scheme to
compute such approximate solutions, without the need to use any nonlinear
algebraic solvers. Our scheme involves a central difference approximation for
the first–order time derivative and a diffusion–modified H1-Galerkin method,
also known as the least square finite element method (fem) with quadrature
for spatial discretization. The standard H1-Galerkin method (without in-
troducing diffusion–modification and quadrature in the scheme) with a trial
space consisting of C2 splines of degree r ≥ 3 and the test space obtained by
applying the Laplace operator to the trial space, was analysed only for linear
parabolic problems on smooth domains in R2 (see [2] and references therein).
In comparison to the standard C0 fems, the method of [2] has the advantage
of obtaining smoother approximate solutions with less degrees of freedom.

Our present fully discrete algorithm is motivated by the fully discrete
Laplace–modified C1 orthogonal spline collocation (osc) method considered
and analysed for linear parabolic problems on rectangles by many authors
(see [1] and references therein). According to the survey paper [1, p.76],
there is a growing interest in developing and analysing C2 spline colloca-
tion methods. However, C2 nodal spline collocation (nsc) method is yet to
be explored for linear parabolic problems in two space dimensions. Even
for elliptic problems on rectangles, analysis and applicability of nsc are re-
stricted to cubic splines on uniform partitions [1]. In contrast our C2 spline
least square quadrature fem and its analysis for (1–3) have the generality
and properties in osc and has the marked advantage of obtaining smoother
approximate solutions with fewer unknowns compared to osc.

The outline of this paper is as follows. In the next section, we introduce
a fully discrete H1-Galerkin diffusion–modified scheme with quadrature to
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solve (1–3). In section 3, we specify assumptions and recall from [3, 4] some
preliminary results required for analysis. In section 4, we prove optimal
order accuracy (in time and in H1, H2 normed spaces) of our fully discrete
scheme. Numerical experiments in section 5 confirm our theoretical results
and demonstrate optimal order convergence in the L2, H1 and H2 norms of
our scheme for a nonlinear reaction–diffusion model problem.

2 The fully discrete diffusion–modified FEM

For chosen integers Nx, Ny ≥ 2 , let Πx = {xk}Nx

k=0 and Πy = {yl}Ny

l=0 be
partitions of [0, 1] in the x- and y-directions. Let hx,k = xk − xk−1 , k =
1, . . . , Nx , hy,l = yl − yl−1 , l = 1, . . . , Ny , hx = max1≤k≤Nx hx,k , hy =
max1≤l≤Ny hy,l , h = max(hx, hy) .

Let Sx, Sy ⊆ H1
0 (0, 1)∩C2[0, 1] denote subspaces consisting of all splines of

degree at most r ≥ 3 defined on the fixed partitions. The trial and test spaces
for the H1-Galerkin method are respectively chosen to be Sh = Sx ⊗ Sy ,
Th = ∆Sh .

For discretization of the Galerkin integrals on Ω, we choose the J =
max{3, r − 1}-point Gauss quadrature on (0, 1) with weights and nodes re-
spectively denoted by {wj}J

j=1 and {ξj}J
j=1. (Our numerical experiments

suggest that for r = 3 , J = r− 1 is sufficient; but for analysis, we need J as
specified.) We approximate the standard L2 inner product and norm on Ω
by

(v, z)h =
Nx∑
k=1

Ny∑
l=1

hx,khy,l

J∑
m=1

J∑
n=1

wmwn(vz)(xk,m, yl,n) , ‖v‖2
h = (v, v)h .

(4)
where xk,m = xk−1 + hx,kξm and yl,n = yl−1 + hy,lξn .

For a positive integer N t, let Πt = {tn}Nt

n=0 be a partition of [0, T ] such
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that tn = nτ, where τ = T/N t . For a function φ defined on Πt, let

φn = φ(tn) , ∂tφ
n =

φn+1 − φn

τ
, ∂̃tφ

n =
φn+1 − φn−1

2τ
,

∂2
t φ

n =
φn+1 − 2φn + φn−1

τ 2
.

Our fully discrete diffusion–modified H1 Galerkin scheme with quadrature
for solving (1–3) is to compute Un+1 ∈ Sh , n = 1, . . . , N t−1 (approximating
the exact solution u(tn+1) of nonlinear reaction–diffusion equation) by solving
the following linear algebraic system:

(∂̃tU
n, v)h − λτ 2(∂2

t ∆U
n, v)h = (F(tn)Un, v)h + (AUn∆Un, v)h , v ∈ Th ,

(5)
where λ > amax/4 is an arbitrary constant and the superposition operators A
and F(t) (for each fixed t ∈ [0, T ]) representing the nonlinear diffusivity and
reaction kinetics are defined by

[Aψ](x, y) = a(x, y, ψ(x, y)) , [F(t)ψ](x, y) = f(x, y, t, ψ(x, y)) ,

ψ ∈ C0(Ω̄) , (x, y) ∈ Ω̄ . (6)

It is useful to note that the matrix, say Mh, in the diffusion–modified
scheme (5) is independent of the discrete time variable and that −Mh is
symmetric and positive–definite. Hence we may, for example, first obtain
the Cholesky factorisation of −Mh and then (for all n = 1, . . . , N t − 1)
solve the linear systems for different rhs terms in (5) by simple forward and
backward eliminations.

The linearised scheme (5) requires selection of U0, U1 ∈ Sh . We select U0

and U1 (using the given initial data u0 in (2) and u0
t from (1) and (2)) by

solving the following fully discrete linear systems:

(Au0∆U0, v)h = (Au0∆u0, v)h , v ∈ Th , (7)

(A(u0 + τu0
t )∆U

1, v)h = (A(u0 + τu0
t )∆(u0 + τu0

t ), v)h , v ∈ Th . (8)
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Remark 1 If a = a(x, y, t) , (that is, the diffusion coefficient a depends on t
and is independent of u) then the diffusion–modified scheme for (1–3) is
defined by (5), for n = 1, . . . , Nt − 1, with AUn be replaced by an. and we
select U0, U1 ∈ Sh as follows:

(a0∆U0, v)h = (Au0∆u0, v)h , (a1∆U1, v)h = (a1∆(u0+τu0
t ), v)h , v ∈ Th .

In such cases, the analysis in the next section is simplified substantially. We
restrict the choice of a in our analysis to depend on only three variables,
instead of all the four variables x, y, t, u mainly to avoid lengthy technical
details. If a = a(x, y, t, u), in our scheme, we need to replace AUn, by
A(tn)Un, with A(t) defined similar to F(t). In this very general case, we
again obtain optimal order convergence, as we demonstrate in section 5. Our
numerical experiments suggest that for some class of fully nonlinear diffusion
coefficients, in order to compute U0, U1, it may be sufficient to solve the
linear system

(∆U0, v)h = (∆u0, v)h , (∆U1, v)h = (∆(u0 + τu0
t ), v)h , v ∈ Th . (9)

In fact, one may choose U0, U1 ∈ Sh in any other way, as long as the as-
sumption in Theorem 8 is satisfied. However, currently we could prove that
the assumption of Theorem 8 hold only if U0, U1 ∈ Sh satisfy (7) and (8)
respectively.

3 Assumptions and preliminary results

For a nonnegative integer k, the standard norms in the Sobolev spacesHk and
k-times continuously differentiable function spaces Ck are denoted by ‖ · ‖k

and ‖ · ‖k,∞ respectively. For a function ψ ∈ C2(Ω× R), we define

vxiyjzk =
∂i+j+kψ

∂xi∂yj∂zk
, 0 ≤ i, j, k ≤ 2 , i+ j + k ≤ 2 .
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Throughout the paper, we assume that the diffusion coefficient a ∈ C5(Ω̄×
R) and for each fixed t ∈ [0, T ] , the nonlinear reaction term f ∈ C2(Ω̄×R).
Further, we assume that for i, j, k = 0, 1, 2 with 0 ≤ i + j + k ≤ 2 ,
fxiyjzk(., ., ., 0) ∈ C(Ω × [0, T ]) and that a, f satisfy the following Lipschitz
conditions:∣∣axiyjzk(x, y, z1)− axiyjzk(x, y, z2)

∣∣ ≤ C |z1 − z2| , (x, y) ∈ Ω, z1, z2 ∈ R ,
(10)∣∣fxiyjzk(x, y, t, z1)− fxiyjzk(x, y, t, z2)

∣∣ ≤ C |z1 − z2| ,
(x, y) ∈ Ω, z1, z2 ∈ R , t ∈ [0, T ] . (11)

For numerical experiments (and in analysis), we require only local Lipschitz
continuity of a, f around a neighbourhood of the exact solution u of (1–3)
that satisfy

u ∈ C6(Ω̄× [0, T ]) , u, ut, utt ∈ C(Hr+3(Ω), [0, T ]) , r ≥ 3 .

As usual, we assume that (5) is solved on a quasi-uniform collection of
partitions Πx × Πy corresponding to a sequence of values (Nx, Ny). Hence,
throughout the paper, C is a generic positive constant which may depend
on r, but which is independent of h and τ . Finally, in order prove the optimal
order O(τ 2 +hr+1−k) convergence in the Hk(Ω) norm for k = 1, 2 , we assume
that Ch2r−2 ≤ τ 2 ≤ Chr . (We observed in numerical experiments only sub-
optimal order convergence in the H2 norm for the choice τ 2 = hr−1 .)

We recall the following results from our work [3, 4]:

Lemma 2 [3] For any spline v, ‖v‖h ≤ C‖v‖0 .

Lemma 3 [3] If v ∈ Sh , then ‖∆v‖0 ≤ C‖∆v‖h and ‖v‖2
1 ≤ −C(v,∆v)h .

Lemma 4 [4] If z ∈ H2(Ω) ∩H1
0 (Ω) , then

|(z,∆v)h| ≤ C(h ‖z‖2 + ‖z‖1)‖v‖1 , v ∈ Sh .
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Let W : [0, T ] → Sh be the comparison function defined by

(Au∆W, v)h = (Au∆u, v)h , v ∈ Th , t ∈ [0, T ] . (12)

Throughout the paper we use the notation η = u−W .

Lemma 5 [3, 4] For each t ∈ [0, T ] ,

‖Wt‖1,∞ ≤ C , ‖η‖` + ‖ηt‖` ≤ Chr+1−` ,

‖∆η‖h + ‖∆ηtt‖h ≤ Chr−1 , ` = 1, 2 .

4 Convergence analysis

In this section, we assume that ξn = Un−W n , n = 0, . . . , N t , where {Un}Nt

n=2

and W are defined by (5) and (12) respectively. The following two lemmas
can be proved following arguments used for similar results in [4].

Lemma 6 Let U0 and U1 be defined as in (7) and (8). Then ‖ξ0‖2
2+‖ξ1‖2

2 ≤
Cτ 4 .

Lemma 7 For n = 1, . . . , N t − 1 , we have for any v ∈ Th

− (∂̃tξ
n, v)h + (AUn∆ξn, v)h + λτ 2(∆∂2

t ξ
n, v)h

= (F(tn)un −F(tn)Un, v)h − (un
t − ∂̃tu

n, v)h − (∂̃tη
n, v)h

+ ([Aun −AUn]∆W n, v)h − λτ 2(∆∂2
t u

n, v)h + λτ 2(∆∂2
t η

n, v)h . (13)

Theorem 8 Assume that ‖ξ0‖2
2 + ‖ξ1‖2

2 ≤ Cτ 4 . If h and τ are sufficiently
small, then

max
0≤n≤Nt

‖∆ξn‖2
0 ≤ C

{
τ 4 + h2r

}
.
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Proof: Taking v = ∂̃t∆ξ
n in (13), we get

−(∂̃tξ
n , ∂̃t∆ξ

n)h + ([AUn − 2λ]∆ξn, ∂̃t∆ξ
n)h

+λ(∆ξn+1 + ∆ξn−1, ∂̃t∆ξ
n)h =

∑6
i=1 I

n
i ,

(14)

where

In
1 = −(un

t − ∂̃tu
n, ∂̃t∆ξ

n)h , In
2 = −(∂̃tη

n , ∂̃t∆ξ
n)h,

In
3 = ([Aun −AUn]∆W n, ∂̃t∆ξ

n)h , In
4 = −λτ 2(∆∂2

t u
n, ∂̃t∆ξ

n)h ,

In
5 = λτ 2(∆∂2

t η
n, ∂̃t∆ξ

n)h , In
6 = (F(tn)un −F(tn)Un, ∂̃t∆ξ

n)h .

For the first and third terms on the left-hand side of (14), we use Lemma 3
to obtain

−(∂̃tξ
n, ∂̃t∆ξ

n)h + λ
(
∆ξn+1 + ∆ξn−1, ∂̃t∆ξ

n
)

h

≥ C‖∂̃tξ
n‖2

1 + λ
2τ

[‖∆ξn+1‖2
h − ‖∆ξn−1‖2

h] .
(15)

Next we bound terms on the right-hand side of (14). Since

un
t − ∂̃tu

n = − 1

4τ

[∫ tn

tn−1

(s− tn−1)
2uttt ds+

∫ tn+1

tn

(s− tn+1)
2uttt ds

]
,

Lemma 4 and the ε inequality yield

In
1 ≤ C‖un

t − ∂̃tu
n‖2‖∂̃tξ

n‖1

≤ Cτ

∫ tn+1

tn−1

‖uttt‖2 ds‖∂̃tξ
n‖1

≤ Cτ 2‖∂̃tξ
n‖1 ≤ ε1‖∂̃tξ

n‖2
1 + C(ε1)τ

4 . (16)

Next we bound In
2 . Using Lemma 4, the relation ∂̃tη

n = 1
2τ

∫ tn+1

tn−1
ηt ds ,

Lemma 5, and the ε inequality we obtain

In
2 ≤ C

(
h‖∂̃tη

n‖2 + ‖∂̃tη
n‖1

)
‖∂̃tξ

n‖1

≤ Cτ−1

∫ tn+1

tn−1

(h‖ηt‖2 + ‖ηt‖1) ds‖∂̃tξ
n‖1

≤ Chr‖∂̃tξ
n‖1 ≤ ε2‖∂̃tξ

n‖2
1 + C(ε2)h

2r . (17)
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The bounds In
3 and In

6 follow from the bounds of similar terms in the main
results of [4] obtained using the assumptions (10–11) and the ε inequality:

In
3 + In

6 ≤ ε3‖∂̃tξ
n‖2

1 + C(ε3)(1 + ‖un‖2,∞ + ‖Un‖1,∞)4(h2r + ‖∆ξn‖2
0) . (18)

To bound In
4 we use Lemma 3.2 [4], the ε inequality and the assumption

‖ξ0‖2
2 + ‖ξ1‖2

2 ≤ Cτ 4 to get

In
4 ≤ ε4‖∂̃tξ

n‖2
1 + C(ε4)τ

4 + Jn , (19)

and where for 2 ≤ j ≤ N t ,

τ

j−1∑
n=1

Jn ≤ Cτ 2

[
τ

j−2∑
n=2

‖∆ξn‖0 +

j∑
i=j−1

∥∥∆ξi
∥∥

0

]
+ Cτ 4 . (20)

Since τ 2∆∂2
t η

n =
∫ tn+1

tn−1
(τ − |s− tn|)∆ηtt ds , the Cauchy-Schwarz inequality,

Lemmas 2 and 5, the inverse and ε inequalities yield

In
5 ≤ C‖τ 2∆∂2

t η
n‖h‖∂̃t∆ξ

n‖h

≤ Cτ

∫ tn+1

tn−1

‖∆ηtt‖h ds‖∂̃t∆ξ
n‖0

≤ Chr−2τ 2‖∂̃tξ
n‖1 ≤ ε5‖∂̃tξ

n‖2
1 + C(ε5)τ

4 . (21)

Using (14–19), (21), taking εi, i = 1, 2, 3, 4, 5, sufficiently small, and multi-
plying through by 2τ , we obtain

2τ‖∂̃tξ
n‖2

1 + 2τ
(
[AUn − 2λ]∆ξn, ∂̃t∆ξ

n
)

h
+ λ

[
‖∆ξn+1‖2

h − ‖∆ξn−1‖2
h

]
≤ C[1 + ‖un‖2,∞ + ‖Un‖1,∞]4

[
τJn + τ‖∆ξn‖2

0 + τ 5 + τh2r
]
. (22)
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Summing both sides of (22) for n = 1, . . . , k − 1, where 2 ≤ k ≤ N t , using
Lemma 2 and that ‖∆ξ0‖2

h + ‖∆ξ1‖2
h ≤ C [‖ξ0‖2

2 + ‖ξ1‖2
2] ≤ Cτ 4 , we obtain

τ

k−1∑
n=1

‖∂̃tξ
n‖2

1 + τ

k−1∑
n=1

(
[AUn − 2λ]∆ξn, ∂̃t∆ξ

n
)

h
+ λ[‖∆ξk‖2

h + ‖∆ξk−1‖2
h]

≤ C max
1≤n≤k−1

[1 + ‖un‖2,∞ + ‖Un‖1,∞]4

[
τ 4 + h2r + τ

k−1∑
n=1

Jn + τ
k−1∑
n=1

‖∆ξn‖2
0

]
.

(23)

The second term on the left hand side of (23) can be written as follows:

2τ
k−1∑
n=1

(
[AUn − 2λ]∆ξn, ∂̃t∆ξ

n
)

h

=
k−1∑
n=1

(
[AUn − 2λ]∆ξn+1,∆ξn

)
h
−

k−1∑
n=1

(
[AUn − 2λ]∆ξn,∆ξn−1

)
h

=
k−1∑
n=1

(
[AUn − 2λ]∆ξn+1,∆ξn

)
h
−

k−2∑
n=0

(
[AUn+1 − 2λ]∆ξn+1,∆ξn

)
h

= J k +
(
[AUk−1 − 2λ]∆ξk,∆ξk−1

)
h
−
(
[AU1 − 2λ]∆ξ1,∆ξ0

)
h
, (24)

where

J k =

{
0 , k = 2 ,∑k−2

n=1 ([AUn −AUn+1]∆ξn+1,∆ξn)h , k = 3, . . . , N t .
(25)

Using (20), the Cauchy-Schwarz and ε inequalities, we obtain

τ

k−1∑
n=1

Jn ≤ C

[
C(ε)τ 4 + ε

(
τ

k−1∑
n=1

‖∆ξn‖2
0 +

k∑
i=k−1

‖∆ξi‖2
0

)
+ τ 4

]
. (26)
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Hence, using (23), (24) and (26), we obtain for k = 2, . . . , N t − 1 ,

2τ
k−1∑
n=1

‖∂̃tξ
n‖2

1 +
(
[A(Uk−1)− 2λ]∆ξk,∆ξk−1

)
h

+ λ[‖∆ξk‖2
h + ‖∆ξk−1‖2

h]

≤
∣∣J k

∣∣+ ([A(U1)− 2λ]∆ξ1,∆ξ0
)

h
+ C[1 + max

0≤n≤k−1
‖Un‖1,∞]4

×

[
(C(ε) + 1)τ 4 + h2r + ε

k∑
i=k−1

‖∆ξi‖2
0 + (ε+ 1)τ

k−1∑
n=1

‖∆ξn‖2
0

]
,

thus, using Lemma 3.3 in [4], Cauchy-Schwarz inequality, Lemma 2, the
assumption ‖ξ0‖2 + ‖ξ1‖2 ≤ Cτ 2 , and taking ε sufficiently small, we obtain
for k = 2, . . . , N t − 1,

τ
k−1∑
n=1

‖∂̃tξ
n‖2

1 +
k∑

i=k−1

‖∆ξi‖2
0

≤ C[1 + max
0≤n≤k−1

‖Un‖1,∞]4

[
τ 4 + h2r + τ

k−1∑
n=1

‖∆ξn‖2
0

]
+
∣∣J k

∣∣ . (27)

For later use we bound ‖U0‖1,∞. Using U0 = W 0+ξ0, the triangle inequality,
Lemma 3.5 in [3], the inverse inequality, and the assumption that ‖ξ0‖2 ≤
Cτ 2 ≤ Chr , we obtain

‖U0‖1,∞ ≤ ‖W 0‖1,∞ + ‖ξ0‖1,∞ ≤ C + h−1‖ξ0‖1 ≤ C . (28)

Next we show the following bounds

|J k| ≤ Cτ
k∑

n=0

‖∆ξn‖2
h , ‖Uk−1‖1,∞ ≤ C , k = 2, . . . , N t . (29)

Using the Cauchy-Schwarz inequality (10), the Sobolev embedding theorem,
Lemma 2, Un = W n + ξn , and the triangle inequality, we obtain for n =
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0, . . . , N t − 1 ,(
[AUn −AUn+1]∆ξn+1,∆ξn

)
h

≤ C‖AUn −AUn+1‖0,∞‖∆ξn+1‖h‖∆ξn‖h

≤ C‖Un − Un+1‖2‖∆ξn+1‖0‖∆ξn‖0

≤ Cτ(‖∂tW
n‖0,∞ + ‖∂tξ

n‖0,∞)‖∆ξn+1‖0‖∆ξn‖0 . (30)

Using the relation ∂tW
n = τ−1

∫ tn
tn−1

Wt ds and Lemma 5, we obtain

‖∂tW
n‖1,∞ ≤ max

0≤t≤T
‖Wt‖1,∞ ≤ C , n = 0, . . . , N t − 1 . (31)

Now, by induction we prove

‖∂tξ
n‖1,∞ ≤ C0 , n = 0, . . . , N t − 1 , (32)

where C0 is a fixed constant independent of τ and h.

For n = 0 , using the inverse inequality, and the assumption that ‖ξ0‖2 +
‖ξ1‖2 ≤ Cτ 2 ≤ Chr ,

‖∂tξ
0‖1,∞ ≤ Ch−1‖∂tξ

0‖1 ≤ Ch−1τ−1

1∑
i=0

‖ξi‖1 ≤ C0 ,

for some suitable positive constant C0, and hence (32) follows for n = 0 .
Let (32) be true for n = 0, . . . , ` for some 0 ≤ ` ≤ N t−2 . We show that (32)
is true with n = `+ 1 .

Using (25), (30), (31) and the induction hypothesis, we get for k =
2, . . . , `+ 2 ,

|J k| ≤ Cτ

k−2∑
n=1

‖∆ξn‖0‖∆ξn+1‖0 ≤ Cτ
k−1∑
n=1

‖∆ξn‖2
0 . (33)
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The triangle inequality, Un = ξn +W n , (28), (31), the induction hypothesis,
yield for n = 1, . . . , `+ 1 ,

‖Un‖1,∞ ≤ Cτ
n−1∑
i=0

‖∂tU
i‖1,∞ + ‖U0‖1,∞

≤ Cτ

n−1∑
i=0

[
‖∂tW

i‖1,∞ + ‖∂tξ
i‖1,∞

]
+ C ≤ C . (34)

Using (33) and (34) in (27), we obtain

τ

k−1∑
n=1

‖∂̃tξ
n‖2

1 + ‖∆ξk‖2
0 ≤ C

[
τ 4 + h2r + τ

k∑
n=0

‖∆ξn‖2
0

]
, k = 0, . . . , `+ 2 .

(35)

Hence, for τ sufficiently small, the discrete analogue of Gronwall’s inequality
gives

τ

`+1∑
n=1

‖∂̃tξ
n‖2

1 + ‖∆ξ`+2‖2
0 ≤ C

{
τ 4 + h2r

}
. (36)

Further, using the triangle and Cauchy-Schwarz inequalities, (36), and the
assumption that ‖ξ0‖2 + ‖ξ1‖2 ≤ Cτ 2 ≤ Chr ,

‖∂tξ
`+1‖1 ≤ C

`+1∑
i=1

‖∂̃tξ
n‖1 + ‖∂tξ

0‖1

≤ Cτ−1

(
`+1∑
i=1

‖∂̃tξ
k‖2

1 +
1∑

i=0

‖ξi‖2

)
≤ Ch3/2 . (37)

The inverse inequality, (37), and h sufficiently small yield

‖∂tξ
`+1‖1,∞ ≤ Ch−1‖∂tξ

`+1‖1 ≤ Ch1/2 ≤ C0 . (38)
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Hence (32) holds for n = 0, . . . , N t − 1, and hence from (28) and (34), we
obtain

‖Un‖1,∞ ≤ C , n = 1, . . . , N t − 1 . (39)

Hence, using (25), (30–32), and (39), we obtain (29).

Finally, using (27) and (29) for k = 2, . . . , N t , we obtain

‖∆ξk‖2
0 ≤ C

[
τ 4 + h2r + τ

k∑
n=1

‖∆ξn‖2
0

]
. (40)

Clearly, (40) holds for k = 0, . . . , N t . Hence, for τ sufficiently small, the
discrete analogue of Gronwall’s inequality gives

‖∆ξn‖2
0 ≤ C

{
τ 4 + h2r

}
, n = 0, . . . , N t . (41)

♠

The optimal order convergence of our fully discrete diffusion–modified
quadrature fem solutions follows now as a corollary to results in this section.

Corollary 9 Let U0 and U1 be defined as in (7) and (8). If h and τ are
sufficiently small, then

max
0≤n≤Nt

‖un − Un‖` ≤ C
{
τ 2 + hr+1−`

}
, ` = 1, 2 .

Proof: Since un − Un = ηn − ξn , the desired inequalities follows from the
triangle inequality, Lemma 5, ‖ξn‖2 ≤ C‖∆ξn‖0 , and Theorem 8. ♠

5 Numerical experiments

In this section, we apply our diffusion–modified least square quadrature H1-
Galerkin method to compute smoothest cubic spline (r = 3) approximate
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solutions U of the nonlinear reaction–diffusion model problem

∂u

∂t
− t4 sin2(u)∆u = f(x, y, t, u) , (x, y, t) ∈ Ω× [0, 1] , (42)

u(x, y, 0) = sin(πx) sin(πy) , (x, y) ∈ Ω̄ , (43)

u(x, y, t) = 0 , (x, y, t) ∈ ∂Ω× [0, 1] , (44)

and the nonlinear reaction kinetics is chosen to be of the Fisher–Kolmogorov
type:

f(x, y, t, u) = t3u(1− u) + f1(x, y, t) ,

where f1(x, y, t) is chosen so that u(x, y, t) = (sin(t) + cos(t)) sin(πx) sin(πy)
is the exact solution of (42–44).

In our numerical experiments, for several values of Nx = Ny = N , we
used uniform partitions in the x and y directions, with h = 1/N . We chose
uniform partitions of the time–interval [0, 1] of equal widths τ so that τ 2 =
hr+1 to check the L2 rate of convergence (R(H0)) and τ 2 = hr to compute
(R(Hk)) in the Hk norm, for k = 1, 2 . We calculated the errors ‖u−U‖k,∞ =
max0≤n≤Nt ‖un−Un‖k , for k = 0, 1, 2 , using 25 translated Gauss quadrature
points on each cell of the 49× 49 uniform partition of Ω.

For a fixed h, we computed U0 and U1 by solving (9). Then, we com-
puted the sparse Cholesky factorization of the time-independent symmet-
ric matrix Mh resulting from our fully discrete scheme diffusion–modified
scheme (5). We used the sparse factorization to compute Un+1 for all n =
1, . . . , N t − 1 by solving (5) with simple forward and backward substitu-
tions. (We observed similar computational time if we instead used the pre-
conditioned conjugate gradient method to solve the linear system in (5) for
n = 1, . . . , N t − 1, with preconditioner at each time given by the matrix
in (9).)

Numerical results in Table 1 confirm the optimal order O(h4−k) conver-
gence of our efficient fully discrete scheme for the nonlinear model problem
(without using any nonlinear algebraic solvers), proved in this paper for
k = 1, 2 and expected from our scheme for k = 0 .
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Table 1: Optimal order L2, H1 and H2 convergence of quadrature fem
solutions
N ‖u− U‖0,∞ R(H0) ‖u− U‖1,∞ R(H1) ‖u− U‖2,∞ R(H2)
4 2.0497e-02 3.1454e-01 1.4258e+00
9 8.1110e-04 3.9827 3.2724e-02 2.7906 1.8124e-01 2.5435
16 8.1268e-05 3.9986 5.8807e-03 2.9832 5.1875e-02 2.1743
25 1.3636e-05 3.9997 1.5488e-03 2.9896 1.8938e-02 2.2579
36 3.1715e-06 3.9999 5.1961e-04 2.9951 8.2064e-03 2.2933
49 9.2405e-07 4.0000 2.0621e-04 2.9977 3.9978e-03 2.3327
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