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Bayesian computations and efficient
algorithms for computing functions of large,

sparse matrices
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Abstract

The need for computing functions of large, sparse matrices arises
in Bayesian spatial models where the computations using Gaussian
Markov random fields require the evaluation of G−1 and G−1/2 for
the precision matrix G and in the geostatistical approach where ap-
proximations of R−1 and R1/2 are needed for the covariance matrix R.
In both cases, good approximations to the desired matrix functions
are required over a range of probable values of a vector v drawn ran-
domly from a given population, as occurs in simulation techniques
for finding posterior distributions such as Markov chain Monte Carlo.
Consequently, it is preferable that the complete matrix function ap-
proximation be determined rather than for its action on a given v.
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The aim of this work is to find low degree polynomial approxima-
tions p(A) such that e = ‖f(A)− p(A)‖2 is small in some sense on
the spectral interval [a, b], where the extreme eigenvalues a and b are
calculated using Krylov subspace approximation. Algorithms based
on low order near-minimax polynomial approximations are proposed
for the required matrix functions for a typical case study in compu-
tational Bayesian statistics, where a good balance between accuracy
and computationally efficiency is achieved.
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1 Introduction

In Bayesian spatial models using a generalised linear mixed model hierar-
chical structure [4], Gaussian Markov random field gmrf models are often
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utilised. The distribution can be defined explicitly so that the density func-
tion for the Gaussian random n-variable y is given by p (y) ∝ exp

(
−1

2
yTGy

)
for the symmetric n× n matrix G, which is known as the precision matrix.
For the gmrf, G is defined to be sparse with off-diagonal elements being
non-zero for so-called spatial neighbours. An example of such a structure
arises in species abundance mapping when data are observed for regions of a
country and neighbours are defined in terms of geographical adjacencies [16].
Let Ni denote the set of neighbours of the ith region or, more generally, node
or vertex i (since the definition can be extended to a undirectional graph),
then Gij = 0 iff j /∈ Ni . The sparseness, or Markov property, is demon-
strated by considering the full conditional distributions p

(
yi | y−i

)
∝ p (y)

where y−i denotes the vector y without yi. In many applications [4, e.g.] the
pair-wise difference distribution

p (y) ∝ exp

{
−1

2
γ

∑
i,j∈Ni

(yi − yj)
2

}

has been used which defines G to be singular, whereas Pettitt et al. [10]
introduce a class of distributions where G is positive definite. The approach
utilising a gmrf appears reasonable when a spatial distribution is being de-
fined for a fixed discrete structure such as a map of regions and centroids
are considered as sites. However, when the distribution is defined on a con-
tinuous set, then generally a Gaussian random field is defined in terms of
moments, means and covariances. The latter are defined in terms of the dis-
tance d between two locations. Often it is sufficient to take the covariances to
be stationary and isotropic. For example, Diggle et al. [5] use the covariance
function σ2 exp

(
−dδ/r

)
, while the spherical function

σ2

{
1− 3d

2r
+ d3

2r3 , d ≤ r ,
0, d > r ,

gives zero covariance for locations at greater distance than r apart. This
approach is sometimes called the geostatistical approach where the n × n
covariance matrix R is defined explicitly. If R is positive definite then G =
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R−1 . Rue [11] gives details of some of the computations required when
using a gmrf. These include sampling from a Gaussian density p (y) ∝
exp

(
−1

2
yTGy + bTy

)
with G and b explicitly defined. A general approach

is to generate a vector z of independently distributed normal, zero mean,
unit variance random variables and construct G−1b + G−1/2z, noting y has
mean G−1b. The approach in [11] is to consider the Cholesky decomposition
G = LLT and solve the systems Lv = b , LT µ = v and LTe = z and sample
y = µ+e . Thus in matrix terms, one can see that these matrix computations
involve the operators G−1 and G−1/2.

When the geostatistical approach is adopted and R is defined explicitly,
then Bayesian computations require explicit evaluation of the likelihood and
full-conditionals and simulation from the distributions. For these we require
the quadratic form yTR−1y and R1/2z, and again we see the need to consider
the matrix function R−1 and, in this case, R1/2.

Note that in both approaches discussed above, good approximations to
the desired matrix functions are required over a range of probable values of
a vector, z, drawn randomly from a given population. A popular method
for approximating f(A)v is to use Arnoldi (Lanczos for symmetric matrices)
decomposition [6, 13]:

AQm = QmHm + βmq̂m+1e
T
m ,

where Qm is an on basis for the m-dimensional Krylov subspace Km (A,v)
generated by A and v. Thus, f (A)v ≈ Qmf (Hm) e1 where v = Qme1 .
However, such strategies do not provide the matrix function f(A), only the
result of its action on vector v. In this work preference is given to determining
low order polynomial approximations p(A) to the complete matrix function,
which can be used thereafter to compute p(A)v for a number of vectors v
drawn randomly from some population.

For the class of statistical matrices introduced above it can be shown that
the spectrum σ(A) ⊂ [1, 2] , which for the functions f (t) = t−1 , t−1/2, t1/2

enables low order near-minimax polynomials to be exploited for the matrix
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function approximation. Hence, all that is required is to obtain the extreme
eigenvalues and to fit a polynomial approximation p (A) to the function. The
former is discussed in Section 2 by using Krylov subspace methods and thick
restart for refinement of the approximate eigenpairs. The latter is investi-
gated in Section 3 via two key strategies — the first uses least squares approx-
imations based on Chebyshev polynomials and the second uses interpolation
at the Chebyshev nodes. The performance of the proposed algorithms for
typical large sparse precision matrices is given in Section 4 and finally, the
main conclusions of the work are presented in Section 5.

2 Krylov subspace approximation

As mentioned in the introduction, one needs to find the smallest and largest
(extreme) eigenvalues of a large, sparse symmetric positive definite matrix.
The best known method to do this is to use a Krylov subspace and al-
though arpack [8] could be used to determine the desired eigenvalues,
we have opted here to use a customised algorithm based on Thick restart
that rapidly converges to the extreme eigenvalues of the matrix in question.
Let K` (A,v) = span

{
v,Av, . . . ,A`−1v

}
be the Krylov subspace generated

by v, where ` is the chosen analytic grade. The analytic grade was intro-
duced in [7] as a useful indicator of the effectiveness of the iterative process.
The Arnoldi process produces the decomposition

AQ` = Q`H` + β`q̂`+1e
T
` , (1)

where for symmetric, positive definite A produces a Hessenberg matrix H`

that is symmetric tridiagonal and positive definite. The Lanczos algorithm
that is usually used to accomplish this decomposition invariably produces
vectors that quickly lose their orthogonality and strategies like reorthogonal-
ization have to be implemented [12]. To avoid this problem, the Householder
algorithm as explained in [17] was used. Extreme eigenvalues of A are ap-
proximated by the extreme eigenvalues of H`.
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2.1 Refinement using Thick restart

To obtain the extreme eigenvalues more accurately, filter polynomials as dis-
cussed in [2] can be used. We have found that the following thick restart
procedure works well (see [3, 15] for more details on restarting). Let

H`Y` = Y`Λ` ,

be the eigenvalue decomposition of H`, where Λ` is real and diagonal and
Y` is on. Since H` is of small dimension, one can obtain this eigenvalue
decomposition using standard methods. Next, choose k extreme eigenvalues
(for example, a cluster of the smallest and largest eigenvalues at the ends of
the spectrum). Set Pk = Q`Yk . It is straightforward to show that

APk = PkΛk + β`q̂`+1s
T
k sk = YT

k e`

= [Pk, q̂`+1]

[
Λk

β`s
T
k

]
.

Obtain the Householder transformations Hi so that

Hk · · ·H1Pk = Ek or Pk = H1 · · ·HkEk ,

where Ek denotes the first k columns of In. To restart the process, calculate
Hk+1 for Hk · · ·H1q̂`+1 and set

p̂k+1 = q̂`+1 = H1 · · ·Hk+1ek+1 .

Then as usual: compute Hk+2 for Hk+1 · · ·H1Ap̂k+1 and set

hk+2 = Hk+2 · · ·H1Ap̂k+1 = β`sk .

Define p̂k+2 = H1 · · ·Hk+2ek+2 . Expand up to ` to reproduce equation (1)
with H` replaced by a matrix that is symmetric and tridiagonal, except
for the principal (k + 1) × (k + 1) leading submatrix. This submatrix has
the current approximations of the extreme eigenvalues on its diagonal and
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hT
k+2 in the (k + 1)st row and hk+2 in the (k + 1)st column. Note that

care must be taken with the construction of H1, . . . ,Hk to ensure that the
signs of the eigenvalues remain positive. Thereafter, the extreme eigenpairs
of this matrix are computed and the entire restart process is repeated until
‖Api − λpi‖ = |β`|

∣∣eT
` yi

∣∣ ≤ ε , i = 1, n is satisfied for the smallest (λ1,p1)
and largest (λn,pn) eigenpairs.

3 Polynomial approximation

In this section numerical strategies for approximating f(A) using Chebyshev
polynomials which provide near-minimax approximations are analysed. We
begin with the following proposition.

Proposition 1 For positive definite matrix A

‖f (A)− p (A)‖2 = max
λi

|f (λi)− p (λi)| ≤ max
a≤t≤b

|f (t)− p (t)| = ‖f − p‖∞ .

This proposition shows that the polynomial p that interpolates f at all eigen-
values λi would be exact. However, this would be impractical for matrices
that may have thousands of eigenvalues. One option is to interpolate on a
handful of eigenvalues chosen at the ends of the spectrum. According to the
usual wisdom the interpolation error at the omitted eigenvalues in the middle
of the spectrum will be minimised. An alternative is to construct polyno-
mial approximations that may not give an exact match at any point on the
interval, but do provide a good approximation at every point in the interval.
Ideally for a given degree n, the polynomial approximation qn should have
the best possible accuracy, that is, ‖f − qn‖∞ = infdeg(p)≤n ‖f − p‖∞ . These
so called minimax polynomial approximations (also called best uniform ap-
proximations or Chebyshev approximations) are quite difficult to produce [1].
An intermediate approximation is the least squares approximation, which is
known to be a fairly good uniform approximation [1].
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3.1 Near-minimax approximations

Although there is a method called the Remes algorithm [1] that will com-
pute a best approximation to high accuracy, the following two near-minimax
approximations give a good enough estimate of the best polynomial approx-
imation.

3.1.1 Interpolation at the Chebyshev Nodes

If pn(t) is the polynomial of degree ≤ n that interpolates f(t) at the zeros of
the Chebyshev polynomial Tn+1(t) on [−1, 1], then [1] gives

‖f − pn (t)‖∞ ≤ 1

(n + 1)! 2n

∥∥f (n+1)
∥∥
∞ .

This approximation can be constructed by either linearly mapping the in-
terval [a, b] onto [−1, 1] and using standard results, or by mapping the zeros
of the Chebyshev polynomial on [−1, 1] to the interval [a, b]. We choose
the latter strategy and map the Chebyshev nodes t̄j = cos(2j + 1π/k),
j = 0, 1, . . . , k to the interval [a, b] using the linear transformation tj =
1
2
[(b− a) t̄j + (b + a)]. The above error bound on [a, b] becomes

E(1)
n =

1

(n + 1)! 2n

(
b− a

2

)n+1 ∥∥f (n+1)
∥∥
∞ .

3.1.2 Chebyshev Least Squares Approximation

If Cn(t) is the least squares approximation, that is, Cn (t) =
∑n

i=0
′ciTi (t) ,

with the coefficients

ci =
2

π

1∫
−1

f (t) Ti (t)√
1− t2

dt ,
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and the prime on the summation indicating that the first term (i = 0) should
be halved, then [1] gives

‖f − Cn(t)‖∞ ≤
(

4 +
4

π2
ln n

)
E(1)

n = E(2)
n .

In this work the Maple software1 has been used to evaluate the coefficients ci.
However, note that these coefficients could be approximated using trapezoidal
integration (see for example Snyder [14]).

4 Results and discussion

In this section the accuracy of the matrix function approximations outlined
in Section 3 for computing the function of a large sparse matrix with compact
spectrum is studied for a typical case study in computational Bayesian statis-
tics. An application to tree biodiversity is presented, where the covariance
matrix and its square root require approximation. The chosen case study is
motivated by a data set that arose in collaborative work with the Queens-
land Department of Natural Resources [9]. The data involved the presence or
absence of a number of native tree species at about 24,000 sites in south-east
Queensland. A number of explanatory variables, such as soil type, rainfall
and terrain, were available for each site. A computational approach to make
a Bayesian solution feasible on a subset of the data of 474 sites uses the
precision matrix G generated as follows (see for example [10]):

Define Ni = {j 6= i | j is in a neighbourhood of i} and ni to be the
cardinality of Ni, then

1 c©Maplesoft, Waterloo Maple Inc.
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• Form the sparse matrix C such that

Cij =


ni, i = j ,
−1, j ∈ Ni ,
0, j /∈ Ni .

Note that the matrix C is rank 1 deficient, and thus symmetric positive
semidefinite.

• Form the precision matrix G = I + γC , with γ chosen to ensure that
G has the spectrum σ(G) ⊂ [1, α], α > 1 .

The neighbourhood consisted of all sites within a 1 km radius of site i.
The precision matrix G gives independence when γ = 0 and a degree of
spatial dependence for positive γ. Alternative definitions of the precision
matrix might take the distance between sites explicitly into account. For
a Bayesian analysis, the computational requirement is to approximate G−1

and G−1/2. It can be shown that the best choice of the parameter γ to ensure
positive definiteness and to guarantee that the spectrum σ (G) ⊆ [1, α] is

γ ≤ α− 1

‖C‖∞
≤ α− 1

λmax

, α > 1 .

The choice of γ = 1/‖C‖∞ led to a precision matrix of dimension 474× 474
having its spectrum σ (G) ⊆ [1, 1.543] and ‖G‖∞ = 2 . However, although
this particular restriction on γ provided good matrix function approxima-
tions, see Tables 1–2, there is some scope in the choice of γ to enable good
approximations for a larger parameter space. However, for larger values of γ
the precision matrix G tends to the singular pair-wise difference distribution
described in the Introduction.

Tables 1–2 present the main findings of the study. The tables list the
method used for the approximation, the measures of accuracy ‖f (G)− p(G)‖2,

‖f − p‖∞ and either E
(1)
n or E

(2)
n . Note that f(G) = Sf(D)S−1 uses the com-

plete diagonalisation of the original matrix G available from matlab.
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Table 1: Summary of errors for precision matrix function f(G) = G−1 .

Approximation ‖f(G)− p(G)‖2 ‖f − p‖∞ E
(1)
n or E

(2)
n

method
ChebyshevLS-2 2.343420e-3 2.343420e-3 2.141839002e-2
ChebyshevN-2 2.599147e-3 2.599147e-3 5.003218970e-3
ChebyshevLS-3 2.557314e-4 2.557314e-4 3.019156437e-3
ChebyshevN-3 2.836387e-4 2.836387e-4 6.791869750e-4
ChebyshevLS-4 2.790731e-5 2.790731e-5 4.206003321e-4
ChebyshevN-4 3.095276e-5 3.095276e-5 9.219963188e-5

Table 2: Summary of errors for precision matrix function f(G) = G−1/2 .

Approximation ‖f(G)− p(G)‖2 ‖f − p‖∞ E
(1)
n or E

(2)
n

method
ChebyshevLS-2 1.950813e-4 1.950813e-4 6.693246879e-3
ChebyshevN-2 2.084965e-4 2.084965e-4 1.563505928e-3
ChebyshevLS-3 1.341534e-5 1.341534e-5 8.255505884e-4
ChebyshevN-3 1.444581e-5 1.444581e-5 1.857151885e-4
ChebyshevLS-4 1.030461e-6 1.030461e-6 1.035071130e-4
ChebyshevN-4 1.115135e-6 1.115135e-6 2.268975316e-5
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The Householder based Lanczos scheme outlined in Section 2 was con-
tinued until an εgrade = 10−25 was reached, which is the value given in [7]
for determining the analytic grade of the Krylov subspace K` (G,v). For
this precision matrix G the analytic grade was estimated as ` = 26 and it
took three further restarts to converge the desired extreme eigenpairs to an
accuracy of less that 10−10. A randomly chosen vector v was used to start
the subspace generation.

The results exhibited in the tables highlight that the best approximation
for both matrix functions f(G) is offered by the Chebyshev least squares
method, followed by interpolation using the Chebyshev nodes, which con-
tradicts the predicted theoretical bounds given by E

(1)
n and E

(2)
n . Undoubt-

edly the good agreement between the polynomial approximations and the
exact result can be attributed to the rather short interval (approximately
[1, 1.543]) over which the approximate polynomial p(G) was constructed.
The least squares approximations are particular suitable in this case when
one notes that there are 474 eigenvalues confined to this interval. Another
conclusion drawn from the tables is that the 4th degree polynomials provide
quite accurate approximations, however one could easily justify the use of
the quadratic and cubic polynomial approximations because it is felt that
the errors offered by these low degree matrix polynomial approximations
are acceptable for most applications in computational Bayesian statistics.
Most importantly however, the computational effort required to evaluate the
quadratic or cubic p(G) would be minimal. Clearly, one must balance the
accuracy and computational efficiency of these approximations when address-
ing the underlying statistical problem. For the precision matrix under study
in this section the Chebyshev cubic least squares approximation is highly
recommended.
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5 Conclusions

We proposed methods for computing functions of large sparse matrices that
arise in Bayesian statistical modelling. The theory and algorithms presented
throughout the text are well suited to such matrices, since they are frequently
symmetric positive definite with fairly compact spectrum. For the class of
sparse matrices examined here, the thick restarted householder based Lanc-
zos scheme enabled rapid convergence to the extreme eigenvalues. These Ritz
values are used to construct low order polynomial approximations. The theo-
retical bounds E

(1)
n and/or E

(2)
n provided the perfect mechanism by which to

gauge the expected accuracy of the required matrix functions approximations
by analysing norms involving only scalar functions.

The accuracy of the computed polynomial approximations was measured
against the complete diagonalisation method. It was found that the near-
minimax Chebyshev least squares approximation of cubic order offers a good
balance between accuracy and computational effort. We suggest that any of
the algorithms given in this paper can be used with confidence in Bayesian
statistical modelling for the purposes of matrix function approximation. In
terms of simplicity and ease of implementation, interpolation at the Cheby-
shev nodes is highly recommended.

Acknowledgments: This work was supported financially by an arc Dis-
covery grant DP0342985. The authors thank the anonymous referee for the
helpful suggestions concerning the proposed techniques.

References

[1] K. E. Aitkinson. An introduction to Numerical Analysis second edition,
Wiley, 1989. C510, C511, C512



References C517

[2] J. Baglama, D. Calvetti, G. H. Golub and L. Reichel. Adaptively
Preconditioned GMRES Algorithms, Siam J. Sci. Comput., vol 20, 1,
pp.243–269, 1998. C509

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst,
editors. Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide. SIAM, Philadelphia, 2000. C509

[4] J. E. Besag and D. Higdon. Bayesian analysis of agricultural field
experiments (with discussion), J. Roy. Statist. Soc. B, 61, 691–746,
1999. C505, C506

[5] P. J. Diggle, J. A. Tawn and R. A. Moyeed. Model-based geostatistics
(with discussion). Appl. Statist., 47, 299–350, 1998. C506

[6] V. L. Druskin and L. A. Knizhnerman. Krylov subspace
approximations of eigenpairs and matrix functions in exact and
computer arithmetic. Numerical Linear Algebra with Applications,
2:205–217, 1995. C507

[7] M. Ilic and I. W. Turner, Krylov Subspaces and the Analytic Grade,
submitted to the Journal Numerical Linear Algebra and its
Applications, 2002. C508, C515

[8] R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users’ Guide
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods SIAM Publications, Philadelphia, USA, 1998. C508

[9] B. McCormack. Timber inventory manual for the native forests of
Queensland. Technical report, Queensland Department of Primary
Industries - Forest Services, Brisbane, Queensland, 1995. C512

[10] A. N. Pettitt, I. S. Weir and A. Hart. A conditional autoregressive
Gaussian process for irregularly spaced multivariate data, Statistics &
Computing 12, 353–367, 2002. C506, C512



References C518

[11] H. Rue. Fast sampling of Gaussian Markov random fields.
J. R. Statist. Soc. B 63, 325–338, 2001. C507

[12] A. Ruhe. Lanczos Method (Section 4.4). In Z. Bai, J. Demmel,
J. Dongarra, A. Ruhe and H. van der Vorst, editors, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
Philadelphia, 2000. C508

[13] Y. Saad. Iterative Methods for Sparse Linear Systems, PWS publishing
Company, ITS, 1996. C507

[14] M. A. Snyder, Chebyshev Methods in Numerical Approximation,
Prentice Hall, Englewood Cliffs, New Jersey USA, 1996. C512

[15] A. Stathopoulos, Y. Saad, and K. Wu. Dynamic Thick Restarting of
the Davidson, and the Implicitly Restarted Arnoldi Methods, SIAM J.
Scientific Computing. (19:1) pp.229–245, 1998. C509

[16] I. S. Weir and A. N. Pettitt. Binary probability maps using a hidden
conditional autoregressive Gaussian process with an application to
Finnish common toad data. Appl. Statist., 49, 473–484, 2000. C506

[17] H. F. Walker and L. Zhou. A Simpler GMRES, Numer. Linear Algebra
Appl., 1, pp.571–581, 1994. C508


	Introduction
	Krylov subspace approximation
	Refinement using Thick restart

	Polynomial approximation
	Near-minimax approximations
	Interpolation at the Chebyshev Nodes
	Chebyshev Least Squares Approximation


	Results and discussion
	Conclusions
	References

