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Stochastic modelling and simulations for solute
transport in porous media
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Abstract

A stochastic model for solute transport in aquifers is studied based
on the concepts of stochastic velocity and stochastic diffusivity. By
applying finite difference techniques to the spatial variables of the
stochastic governing equation, a system of stiff stochastic ordinary dif-
ferential equations is obtained. Both the semi-implicit Euler method
and the balanced implicit method are used for solving this stochastic
system. Based on the Karhunen-Loeve expansion, stochastic processes
in time and space are calculated by means of a spatial correlation ma-
trix. Four types of spatial correlation matrices are presented based on
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the hydraulic properties of physical parameters. Simulations with two
types of correlation matrices are presented.
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1 Introduction

In the last few decades solute transport in porous media has attracted much
attention. This research topic is very important in both environmental pro-
tection and resource management. However, due to the inaccuracy or insuf-
ficiency of hydrogeological and hydrochemical information, there are many
uncertainties in modeling solute transport by the deterministic advection-
dispersion equation. To overcome these difficulties, researchers usually use
stochastic approaches that treat aquifer properties and flow variables as spa-
tial random fields characterised by a limited number of statistical parameters
rather than by well defined deterministic values. Dagan [3] considered the
concentration of a solute as a random variable and presented a stochastic
model with random coefficients. Deterministic equations are derived for the
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moments of the concentration. The weakness of this type of stochastic ap-
proach is the limitation on the magnitude of the random parameters required
by the perturbation expansion solution. Rubin [8] recently surveyed the de-
velopment in this research direction.

Another approach is to simulate the stochastic governing equation directly
if the number of stochastic sources is more than one. Hydraulic properties
may be based on stochastic coefficients, a stochastic driving force, and/or
stochastic boundary and initial conditions [5, 9]. The source of randomness
is used more directly in order to deal with larger random variations. This
numerical approach not only provides statistical properties of the concen-
tration but also gives stochastic simulations of the solute transport. With
the progress in computing facilities and numerical methods for stochastic
differential equations, this approach is becoming more and more attractive.

In the stochastic simulation approach, stochastic ordinary differential
equations (sodes) are obtained after applying a finite difference scheme to
spatial variables of the stochastic governing equation. One of the difficul-
ties in designing effective numerical methods for strong solutions of sodes is
the stability requirements when the sodes are stiff in both the deterministic
and stochastic components. There have been some attempts in the literature
for improving stability properties of numerical methods for stiff sodes [2].
However, due to the complexity of the sodes in this paper, the semi-implicit
Euler method and the balanced implicit method will be used in simulations.

The outline of this paper is as follows. In Section 2 we first discuss the
stochastic governing equation. In Section 3 we apply a semi-discretization
process to the stochastic governing equation and obtain a system of sodes.
The calculation of stochastic processes in time and space is also discussed in
this section. Numerical simulations are presented in Section 4.
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2 Stochastic model

For a three-dimensional deterministic problem, the solute transport in an
aquifer is described by the advection-dispersion equation [1]

∂(ϕC)

∂t
+ div(ϕJ) = 0 , (1)

with v = −(K/ϕ)∇φ and J = vC−D∇C . Here C is the solute concentration
at position (x1, x2, x3) and time t, D is a dispersion tensor which accounts
for the molecular diffusion and pore-scale dispersion, v = (vx1 , vx2 , vx3)

> is
the Darcy velocity vector, ∇φ is the gradient of piezometric head, ϕ is the
porosity (volumetric water content) and K is the hydraulic conductivity.

In an isotropic porous medium, if aligning an axis with the direction of
the velocity vector, the diffusivity matrix can be written as a diagonal matrix
D = diag(Dx1 , Dx2 , Dx3). For the 3-dimensional steady flow in homogeneous
and isotropic soil, it is assumed that K and ϕ are constant, D is a constant
tensor, and ∇φ satisfies

∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

= 0 . (2)

Substituting v and J into the governing equation (1) and applying the ho-
mogeneous and isotropic condition (2), the following equation gives the 3-
dimensional solute transport in homogeneous and isotropic aquifers

∂C

∂t
= −

3∑
i=1

vxi

∂C

∂xi

+
3∑

i=1

Dxi

∂2C

∂x2
i

. (3)

Since the velocity of a solute particle is central in formulating a model of
transport process, we first consider the concept of stochastic velocity for the
motion of a tracer in a porous medium with uncertainties due to the pore
structure:

v = −K

ϕ
∇φ + s1 , (4)
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where s1(x, t) = (s11, s12, s13)
> is a stochastic vector in time and space.

Apart from the velocity of a tracer, another important physical phe-
nomenon involved in the solute transport is dispersion which is used to de-
scribe solute movement carried by the convection fluid. Dispersion may play
a significant role in describing the solute transport if the velocity is very small.
The second stochastic concept considered here is the stochastic dispersion

D̄ = D + s2 , (5)

where the stochastic components s2(t, x) = diag(s21, s22, s23) has the same
structure of D. Substituting (4) and (5) into (3), the following random field
gives the solute transport in porous media with uncertainties:

∂C

∂t
= −

3∑
i=1

(vxi
+ s1i)

∂C

∂xi

+
3∑

i=1

(Dxi
+ s2i)

∂2C

∂x2
i

. (6)

Due to the limit of space, here we just consider simulations for one-
dimensional solute transport in an homogeneous and isotropic aquifer. For
this one-dimensional problem, the stochastic governing equation is

∂C

∂t
= −(v + s1)

∂C

∂x
+ (D + s2)

∂2C

∂x2
. (7)

Note that model (7) is different from that proposed by Kulasiri [5] in which
the derivatives of stochastic processes were considered.

The initial condition for 1-dimensional solute transport is C(x, 0) = c0(x)
(0 ≤ x ≤ l) and we consider the upstream boundary condition

C(0, t) =

{
c1(t), 0 < t < t0 ,

0, t > t0 ,

∂C

∂x

∣∣∣∣
x=l

= c2(t). (8)
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3 Stochastic differential equations

For a given equidistant mesh on [0, l] with xn = nhx (n = 0, 1, . . . , N + 1),
forward and central differences are used to approximate the first and second
partial differentials in space, respectively. Denoting Cn = C(xn, t) and sjn =
sj(xn, t) (j = 1, 2), stochastic equation (7) is approximated by

dCn

dt
= −(v + s1n)

Cn+1 − Cn

hx

+ (D + s2n)
Cn+1 − 2Cn + Cn−1

h2
x

, (9)

for n = 1, . . . , N . Denoting C̄ = (C1, . . . , CN)> and s̄j = (sj1, . . . , sjN)>,
equations (9) become

dC̄ = (A0 + A1C̄)dt +
N∑

n=1

[B1ndξ1n + B2ndξ2n] C̄ + A2 , (10)

where

A0 =

(
D

h2
x

C0, 0, . . . , 0,
D − vh

h2
x

CN+1

)>
A1 =

1

h2
x

tri-diag(D, a1, a2)

A2 =
1

h2
x

(C0dξ21, 0, . . . , 0)>

with a1 = vh− 2D and a2 = D − vh . Here dξjn = sjndt and ξjn = ξj(xn, t) .
C0 and CN+1 are determined by the boundary conditions. The sparse matri-



3 Stochastic differential equations C557

ces Bjn = (b
(jn)
kl )N×N have non-zero elements:

b
(1n)
kl =

1

hx

{
−1, k = n, l = n + 1 ,
1, k = l = n ,

n = 1, . . . , N − 1 ;

b
(21)
kl =

1

h2
x

{
−2, k = l = 1 ,
1, k = 1, l = 2 ;

b
(2n)
kl =

1

h2
x

{
−2, k = l = n ,
1, k = n, l = n− 1 or l = n + 1 ,

n = 2, . . . , N − 1 ;

b
(2N)
kl =

1

h2
x

{
1, k = N, l = N − 1 ,
−1, k = N, l = N .

Now we consider two different simulation methods for solving sodes. For
the general sode in Itô form

dy = g0(y)dt +
d∑

j=1

gj(y)dWj(t), (11)

the semi-implicit Euler method takes the form [2]

yi+1 = yi + g0(yi+1)ht +
d∑

j=1

∆W
(i)
j gj(yi). (12)

Here the ∆W
(i)
j are the Wiener increments for time step i + 1 and are inde-

pendent N(0, ht). The balanced implicit method takes the form [7]

yi+1 = yi + g0(yi)ht +
d∑

j=1

∆W
(i)
j gj(yi) + Ui(yi − yi+1), (13)

with

Ui = u0(yi)ht +
d∑

j=1

|∆W
(i)
j |uj(yi).
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Here uj (j = 0, 1, . . . , d) represent m × m-matrix-value functions if y is a
m-dimensional vector. These matrices are chosen appropriately to get good
damping properties. Applying the semi-implicit Euler method (12) to (10)
gives

C̄i+1 = C̄i + (A0 + A1C̄i+1)ht +
N∑

n=1

[
B1n∆ξ

(i)
1n + B2n∆ξ

(i)
2n

]
C̄i + ∆A2 ,

where C̄i = C̄(ti) with ti = iht , and ∆A2 = (C0∆ξ21/h
2
x, 0, . . . , 0)> .

Using the Karhunen-Loeve expansion [4], the stochastic process ∆ξ(x, t) =
ξ(x, t + ht)− ξ(x, t) has the truncating expansion

∆ξ(x, t) =
N∑

n=1

√
λn∆ηn(t)fn(x),

where the ∆ηn(t) ∼ N(0,
√

ht) are independent Gaussian processes. Then
the stochastic vector ∆ξ̄(t) = (∆ξ(x1, t), . . . , ∆ξ(xN , t))> can be expressed
as ∆ξ̄(t) = F∆η̄ with F = (Fij)N×N = (fj(xi))N×N and

∆η̄ =
(√

λ1∆η1(t), . . . ,
√

λN∆ηN(t)
)>

.

A spatial correlation matrix Q = (Qij)N×N is defined with eigenvalues λi

and the corresponding eigenvectors en = (fn(x1), . . . , fn(xN))> . There are
four types of spatial correlation matrices based on the hydraulic properties
of physical parameters.

Type 1. The spatial independent matrix

Qij = qδij . (14)

Type 2. The adjacent correlation matrix

Qij = tri-diag(q, 2q, q).
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Type 3. The exponential correlation matrix [4]

Qij = q exp

(
−|xi − xj|

r

)
,

with a parameter r for adjusting the correlation decay rate between
two points of the process.

Type 4. The triangular correlation matrix [4]

Qij = q(1− r|xi − xj|) , |xi − xj| ∈
[
0,

1

r

]
, (15)

where r is a parameter for adjusting the correlation between two points
of the process.

Here q in all four types of correlation matrices is a scalar with different values
for the stochastic components of the velocity and diffusivity, respectively.

Applying the balanced implicit method (13) to (10), gives

C̄i+1 = C̄i + (A0 + A1C̄i)ht +
N∑

n=1

[
B1n∆ξ

(i)
1n + B2n∆ξ

(i)
2n

]
C̄i + ∆A2

+

{
Ā1ht +

N∑
n=1

[
B̄1n|∆ξ

(i)
1n |+ B̄2n|∆ξ

(i)
2n |

]}
(C̄i − C̄i+1).

The implicit nature of this method is adjusted by choosing the matrix Ā1

and the B̄jn appropriately.

Matrix Ā1 is determined by the properties of A1. As the eigenvalues
of A1 are all negative, we choose Ā1 = −A1 . In this case the deterministic
component is implicit. For stochastic components, the non-zero elements of
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the matrices B̄jn = (b̄
(jn)
kl )N×N can be chosen as: b̄

(1n)
nn = µ1/hx and b̄

(2n)
nn =

µ2/h
2
x (n = 1, . . . , N). We have that

N∑
n=1

B̄jn|∆ξ
(i)
jn | = λjdiag(|∆ξj1|, . . . , |∆ξjN |), j = 1, 2 ,

with λ1 = µ1/hx and λ2 = µ2/h
2
x . With positive µ1 and µ2, it can be proved

that the matrix

I − A1 +
N∑

n=1

B̄1n|∆ξ
(i)
1n |+

N∑
n=1

B̄2n|∆ξ
(i)
2n |

has an inverse and every eigenvalue of the inverse matrix is less than 1. Com-
pared with the semi-implicit Euler method, the balanced implicit method can
be implemented with better stability properties.

4 Numerical results

In this section we present stochastic simulations of the solute transport in an
aquifer by using the semi-implicit Euler method and the balanced implicit
method. Due to the limit of space, we just give simulations with Types 1
and 4 correlation matrices. Hydrology parameters are: Darcy velocity: v =
−K

ϕ
∇φ = 1 cm/hour; diffusivity: D = 0.03 cm2/hour [10], and step sizes are

hx = 0.05 and ht = 0.01 . The initial condition is C(x, 0) = 0 (0 ≤ x ≤ 5)
and the boundary conditions are c1(t) = 1 , t0 = 3 and c2(t) = 0 in (8). The
scalars q in (14) are q1 = 0.002 and q2 = 0.00002 while those in (15) are
q1 = 0.005 and q2 = 0.00005 for ∆ξ1n and ∆ξ2n, respectively.

Figure 1 gives simulations obtained by the semi-implicit Euler method
with the spatial independent matrix (left) and the triangular correlation ma-
trix (r = 1/l = 0.2) (right) at t = 1, 4, 7 . Fluctuations of the concentration
in the left figure are larger than those in the right figure. For the triangular
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Figure 1: Simulations of the semi-implicit Euler method with two different
spatial correlation matrices given by Eqs (14) (left) and (15) (right). (t =
1: solid line; t = 4: dashed line; t = 7: dash-doted line).

correlation matrix we have also simulated the system with other r in (15).
Fluctuations in concentration are larger if a larger r is used.

As concentrations in deterministic simulations are in the range of [0, 1],
concentrations beyond this range in stochastic simulations may be derived
from stochastic processes in the governing equation, the finite difference pro-
cedure for discretising the governing equation, and the accuracy and stability
properties of numerical methods for solving (10). Here we use the balanced
implicit method to study the impact of stability properties of numerical meth-
ods on simulation results.

We can choose different µ1 and µ2 in the balanced implicit method to
adjust stability properties. Numerical simulations with all four types of spa-
tial correlation matrices indicate that, if larger µ1 and µ2 are used, fluc-
tuations in concentration are smaller but computational errors are larger.
If µ1 and µ2 are too small, the difference between simulations obtained by
the semi-implicit Euler method and by the balanced implicit method is very
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Figure 2: Simulations of the balanced implicit method with two different
spatial correlation matrices given by Eqs (14) (left) and (15) (right). (t =
1: solid line; t = 4: dashed line; t = 7: dash-doted line).

small. For the problem in this paper it is recommended to use µ1 and µ2

in the range between 0.5 and 2. In this case the stability properties of the
balanced implicit method are improved and the computational errors are
acceptable.

Figure 2 gives simulations using the balanced implicit method with µ1 =
µ2 = 1 . For both types of spatial correlation matrices, negative concen-
trations in Figure 2 are much smaller than those in Figure 1. Similar ob-
servation can also be found for concentration fluctuations which are greater
than 1. This indicates that good stability properties of numerical methods
have positive impact on fluctuations in stochastic simulations. Thus nu-
merical methods with good stability properties can reduce fluctuations in
stochastic simulations.
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5 Conclusions

A stochastic model for solute transport in aquifers has been considered based
on the concepts of stochastic velocity and stochastic diffusivity. The semi-
implicit Euler method and the balanced implicit method have been used to
solve the derived sodes. The drawback of the semi-implicit Euler method
is the large non-physical values of concentrations (C < 0 or C > 1). It
has been shown that the good stability properties of the balanced implicit
method have significant impact on stochastic simulations.

Both the semi-implicit Euler method and the implicit balanced method
are of strong order half. Considering the forward difference scheme applied
to the governing equation (7), the accuracy of numerical simulations in this
paper is just O(

√
ht + hx). In order to improve the accuracy of stochas-

tic simulations, future work should be based on the development of implicit
numerical methods for solving sodes with high convergence order and with
better stability properties. In addition it would be very important to em-
ploy other discretization schemes for the governing equation (7) in order to
improve stability properties, which is a key issue in numerical solutions of
partial differential equations. Candidate schemes include the up-wind scheme
and the Dufort-Frankel scheme [6]. All of these are the topics for future work.
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