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Robustness of mathematical models for
biological systems
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Abstract

The robustness of mathematical models for biological systems is
studied by sensitivity analysis and stochastic simulations. Using a
neural network model with three genes as the test problem, we study
robustness properties of synthesis and degradation processes. For sin-
gle parameter robustness, sensitivity analysis techniques are applied
for studying parameter variations and stochastic simulations are used
for investigating the impact of external noise. Results of sensitivity
analysis are consistent with those obtained by stochastic simulations.
Stochastic models with external noise can be used for studying the
robustness not only to external noise but also to parameter varia-
tions. For external noise we also use stochastic models to study the
robustness of the function of each gene and that of the system.
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1 Introduction

The notion of robustness in biological systems has received considerable in-
terest recently by experiments and theoretical study. By saying that a system
is robust we imply that a particular function or characteristic of the system is
preserved despite changes in the operating environment [6] or genetic changes
in its components [5]. For example, by a computer model [2] and later by
experiments [1], it has been demonstrated that the adaptation mechanism
found in the chemotactic signaling pathway in Escherichia coli is robust. For
robust biological systems, we expect that mathematical models that attempt
to explain these systems should also be robust. It has been proposed that
the robustness of mathematical models be used as a criterion for determining
plausibility of candidate models [7, 9].

One topic in the robustness analysis of mathematical models is the model’s
sensitivity to parameter variations. These variations may be errors in pa-
rameter estimation or changes in the components of biological systems. This
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topic has been studied by the sensitivity analysis techniques [3, 6, 7]. There
are two approaches for the sensitivity analysis of single parameter: repeated
simulations by varying one parameter while holding all others fixed; and
adjacent models for comparing the importance of each parameter variation.
However, single parameter insensitivity may not be sufficient owing to inter-
actions between several parameters. Systematic changes of many parameters
at a time suffer from an exponential increase in the number of parameters
that need to be changed. More sophisticated methods are needed for studying
multi-parameter robustness.

Another important topic is the robustness analysis of mathematical mod-
els for the noise in biological systems. Noise existing in biological systems is
classified as external noise due to environmental fluctuations or internal noise
due to small numbers of some important regulatory molecules [4]. As living
systems are optimized to function in the presence of stochastic fluctuations,
mathematical models for biochemical networks must withstand considerable
variations and random perturbations of biochemical parameters [8]. The
study of the robustness to noise normally is carried out by simulations of
stochastic models [8, 9].

We investigate the robustness of mathematical models to external noise
and the relationship between the robustness to parameter variations and that
to external noise. In Section 2 we present adjacent models and stochastic
models for studying robustness properties. A neural network model with
three genes is introduced in Section 3. In Section 4 we discuss single pa-
rameter robustness and the discussion for multi-parameters is presented in
Section 5.

2 Methods for studying robustness

In this section we present methods used in this paper for studying the ro-
bustness of mathematical models. The first method is the adjacent model
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for studying parameter variations. For a given model (the base model) with
parameter p

dx

dt
= f(t, x, p) , (1)

we consider the solution x∗ of this system with a perturbed parameter p+∆p .
The difference between solutions x∗ and x is

d(x∗ − x)

dt
= f(t, x∗, p + ∆p)− f(t, x, p) ≈ ∂f

∂x
(x∗ − x) +

∂f

∂p
∆p .

Together with the base model (1), the adjacent model for parameter p is

dEp

dt
=

∂f

∂x
Ep +

∂f

∂p
. (2)

Here Ep represents the drift of the solution with a unit parameter perturba-
tion. The solutions of adjacent models for certain important parameters in
the base model give insight into which parameter induces the largest error in
solutions and when errors will be the largest in simulations.

In order to study external noise, Hasty et al. [4] introduced stochastic
models by adding additive or multiplicative noise to mathematical models.
For example, for a biological system with mathematical model (the base
model)

dx

dt
= f(t, x)− dxx ,

the stochastic model with additive noise is

dx = f(t, x) dt− dxx dt + k dW (t) . (3)

When considering noise in the degradation process, the stochastic model with
multiplicative noise is

dx = f(t, x) dt− dxx dt + kdxx dW (t) . (4)

Here W (t) is the Wiener process whose increments are independent Gaussian
random variables, and k is a scalar for adjusting the magnitude of noise.



2 Methods for studying robustness C569

Based on a large number of stochastic simulations, moments of the simulated
solutions can be calculated. Then the robustness to noise can be measured
by the comparison of these moments with the solution obtained by the base
model and with the variance of noise in model (3) or (4).

3 Neural network models

Neural network models have been used for expressing regulatory mechanisms
in genetic regulatory networks [10]. A system with N genes is

dxi

dt
= sigi(t)− dixi , with i = 1, . . . , N . (5)

Here xi, si and di are the expression level, synthesis rate and degradation
rate of gene i in the system, respectively. The functions gi are the sigmoidal
transfer function

gi(t) =
1

1 + exp[−ri(t)]
, (6)

with

ri(t) =
N∑

j=1

wijxj(t) + bi .

Here b = (bi)N is a vector for reaction delay, and the weight matrix w=
(wij)N×N defines regulatory interactions between genes. A regulation from
gene j to gene i means a non-zero weight wij. A positive weight implies a
stimulating effect (positive feedback) while a negative weight implies repres-
sion (negative feedback). A zero weight means no regulatory interaction.

Figure 1 gives a gene network with three genes which has been used for
realizing two important expression patterns: oscillation and steady state [10].
In this network, the product of Gene A controls the expression of Gene B,
which initiates the expression of Gene C. Gene B induces the expression of
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Figure 1: A gene network with three genes.

Gene A forming a positive feedback. Gene C in turn negatively controls the
expression of Gene A, forming a negative feedback. The regulation in this
network is characterized by the weight matrix [10]

w =

 0 10 −10
10 0 0
0 10 0

 . (7)

We realize a simulation with the steady state expression pattern by using (7)
and

s = (1, 1, 1) , d = s , b = −s ;

and a simulation with the oscillatory expression pattern by using (7) and

s = (4.5, 1, 1) , d = (0.6, 1, 1) , b = −(3, 3, 3) .

4 Single parameter robustness

In this section we will study the robustness of model (5) to parameter varia-
tions and fluctuations to each synthesis rate and degradation rate. For each
synthesis rate si (i = 1, 2, 3), the adjacent model (together with (5)) is

dEsij

dt
= sjg

2
j (t) ∗ e−rj(t) ∗ [w(j, :) · Esi]− djEsij + δijgj(t) , (8)
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with j = 1, 2, 3. Here Esi = (Esi1, Esi2, Esi3)
>. For each degradation rate di

(i = 1, 2, 3), the adjacent model (together with (5)) is

dEdij

dt
= sjg

2
j (t) ∗ e−rj(t) ∗ [w(j, :) · Edi]− djEdij − δijdj , (9)

with j = 1, 2, 3. Here Edi = (Edi1, Edi2, Edi3)
>.

Stochastic models for studying external noise in each reaction rate can
be constructed by adding a stochastic process to the corresponding reaction
rate. Similar to model (4), the stochastic model for studying fluctuations in
each si (i = 1, 2, 3) takes the form

dxj = sjgj(t) dt + δijksjgj(t) dW (t)− djxj dt , (10)

with j = 1, 2, 3 . Here k is a scalar for adjusting the magnitude of noise in
the synthesis process. The stochastic model for each di (i = 1, 2, 3) is

dxj = sjgj(t) dt− djxj dt− δijkdjxj dW (t) , (11)

with j = 1, 2, 3 .

Figure 2 gives simulations of Esi3 (i = 1, 2, 3) from adjacent models (8)
for the steady state expression pattern (left) and the oscillatory expression
pattern (right). Variations in parameter s3 have more influence on simulation
results. Compared with the steady state pattern, parameter variations in the
oscillatory pattern have much larger influence on network behaviour. Similar
simulations can be obtained from adjacent models for degradation rates (9)
but they are not presented here due to the limit of space. Similarly variations
in parameter d3 have more influence on simulation results and the oscillatory
pattern is more sensitive to variations in degradation rates.

For stochastic model (10) with same k = 0.15 for each i (i = 1, 2, 3),
Figure 3 gives simulations of x3 for the steady state expression pattern (left)
and the oscillatory pattern (right). Similar to Figure 2, noise related to
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Figure 2: Simulations of Esi3 for the steady state pattern (left) and the
oscillatory pattern (right). (Es13: line, Es23: dash, Es33: dot)
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Figure 3: Simulations of x3 from model (10) for the steady state pattern
(left) and oscillatory pattern (right). (model with noise in s1: line, s2: dash,
s3: dot).



4 Single parameter robustness C573

s3 or d3 has more influence on the system. In addition, fluctuations in the
oscillatory pattern are much larger than those in the steady state pattern.

In addition to the qualitative results in Figures 2 and 3, we give quanti-
tative results of the robustness properties of model (5). For the steady state
expression pattern, we are interested in the drift of expression levels for the
deterministic model

Dj(p) = xj(p)− xj ,

where xj is the expression level of gene j in system (5), xj(p) is the expression
level obtained from (5) in which parameter p is perturbed. Based on N
stochastic simulations, we use the mean of drifts and standard deviation
of xj,

MDj(p) =
1

N

N∑
k=1

[
x

(k)
j (p)− xj

]
≡ x̄j(p)− xj ,

SDj(p) =

√√√√ 1

N − 1

N∑
k=1

(xj
(k)(p)− x̄j(p))2 ,

to measure the robustness properties to external noise. Here xj
(k)(p) is the

expression level of xj in the kth simulation. It is obtained from a stochastic
model with a stochastic component in parameter p.

Table 1 gives quantitative results from the deterministic and stochastic
simulations for the steady state expression pattern. For the deterministic
model (5), we vary each si (i = 1, 2, 3) by s∗i = si(1 + 0.15) and fix all other
parameters. Similar considerations are applied to each di. The first row of
Table 1 gives drifts of x3 with each perturbed parameter. Results in the last
two rows are based 1000 simulations from models (10) and (11). We use the
same k = 0.15 in noise terms of these stochastic models. These data give
quantitative evidence to support the results in Figures 2 and 3.

The drifts of x3 (D3(p)) obtained by deterministic simulations are consis-
tent with the means of drifts (MD3(p)) obtained by stochastic simulations.
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Table 1: Simulation results of x3 for single parameter robustness
p = s1 p = s2 p = s3 p = d1 p = d2 p = d3

D3(p) 2.9E-4 3.1E-2 8.3E-2 −2.6E-4 −3.4E-2 −7.4E-2
MD3(p) −9.1E-6 −2.1E-3 4.7E-3 8.6E-6 −2.1E-3 7.4E-3
SD3(p) 1.8E-4 2.6E-2 8.9E-2 1.9E-4 2.5E-2 9.1E-2

This observation suggests that stochastic simulations can study robustness
properties not only for external noise but also for parameter variations. In
the following section we use stochastic simulations to measure the robustness
properties of model (5) to multiple parameters.

5 Robustness to multi-parameters

For multi-parameter problems we do not address all of the possible combi-
nations of the parameters. Instead we just study the robustness to noise in
synthesis and degradation processes of each gene. The following models will
be used in stochastic simulations:

dxj = [sjgj(t)− djxj] dt + δij[k1sjgj(t) dW1 − k2djxj dW2] , (12)

with j = 1, 2, 3 for each gene i (i = 1, 2, 3). Here we use k1 = k2 = 0.15 .

Based on 1000 simulations, we calculate moments of the expression levels
obtained from (12). The definitions for the mean of drifts and standard
deviation of xj are defined by

MDj(i) =
1

N

N∑
k=1

[
x

(k)
j (i)− xj

]
≡ x̄j(i)− xj ,

SDj(i) =

√√√√ 1

N − 1

N∑
k=1

(xj
(k)(i)− x̄j(i))2 ,
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Table 2: Simulation results of x3 by (12) with noise in si and di

i = 1 i = 2 i = 3
MD3(i) 4.64E-6 5.9E-3 7.1E-3
SD3(i) 2.78E-4 3.74E-2 0.1324

where xj
(k)(i) is the expression level of xj in the kth simulation. It is obtained

from model (12) with stochastic components in si and di. For the steady state
expression pattern, Table 2 lists the means of drifts and standard deviations
of x3. Noise in s1 and d1 (i = 1) has less impact on the system due to
simple functions of Gene 1 (only stimulating Gene 2). For Gene 2 (i = 2),
fluctuations of the system are larger than those of Gene 1 because of more
functions of Gene 2 (stimulating both Gene 1 and Gene 3). The system with
noise in s3 and d3 (i = 3) is still robust but numerical simulations have the
largest fluctuations. This is due to the critical negative feedback function of
Gene 3 in the system. These results indicate that the influence of a gene on
robustness properties depends on its functions in the system.

Finally, the robustness of model (5) to external noise which is related to
the synthesis and degradation processes of all genes. This stochastic model
has been studied in [9], with j = 1, 2, 3

dxj = [sjgj(t)− djxj]dt + k1jsjgj(t) dW1j − k2jdjxj dW2j . (13)

Figure 4 gives simulations of model (13) for the steady state pattern (left)
and the oscillatory pattern (right) with k1j = k2j = 0.15 (j = 1, 2, 3). The
steady state pattern is robust but the oscillatory pattern is strongly influ-
enced by external noise. The period and amplitude of oscillations fluctuate
widely in time. This result serves as an evidence for questioning the suitabil-
ity of neural network models for describing oscillatory phenomena in genetic
regulatory networks.
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Figure 4: Simulations of model (13) for the steady state pattern (left) and
the oscillatory pattern (right). (x1: line, x2: dash, x3: dot).

6 Conclusions

For studying the robustness of mathematical models for biological systems,
we should address three sources of uncertainty: errors in estimated param-
eters; external noise for environmental fluctuations; and internal noise due
to small numbers of regulatory molecules. The analysis for each source of
uncertainty is the first step in finding robustness properties of mathemati-
cal models. It would be very important to search relationships between the
robustness properties of each source and the impact of combined sources on
mathematical models. The work in this paper is an attempt in this direction.
It is suggested that stochastic simulations be used to study the robustness
not only to external noise but also to parameter variations. In this paper a
neural network model with three genes has been used as the test problem.
Future work will be based on the applications of stochastic simulations to
more complicated biological systems.
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