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Adaptive stepsize implementations of implicit
stochastic Runge Kutta methods with

modified Wiener increment
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Abstract

An adaptive stepsize algorithm is implemented on a stochastic im-
plicit strong order 1 method, namely a stiffly accurate diagonal im-
plicit stochastic Runge-Kutta method where a modified Wiener incre-
ment ∆W̄n is involved instead of a regular ∆Wn = β

√
h, β ∼ N(0, 1)

to avoid unboundedness. The modified Wiener increment is equal to
the regular one only if |β| ≤ Ah , otherwise ∆W̄ = −Ah

√
h or Ah

√
h

if β < −Ah or β > Ah, respectively. The parameter Ah is determined
based on a strong order inequality requirement (Milstein et al., 2002)

E(β̄ − β)2 ≤ hk , k ≥ 1 .
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The variable stepsize algorithm is based on Richardson’s extrapo-
lation. For every step change additional work is required to com-
pute ∆W̄n so that the correct Brownian path is maintained from sim-
ulation to simulation. Numerical experiments in solving nonlinear and
linear stochastic differential equation problems demonstrate that bet-
ter approximations are obtained with the modified Wiener increment
compared to using the regular Wiener increment.
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1 Introduction

A variable stepsize implementation is introduced for the strong solution of
stiff stochastic differential equations (sdes) in the Stratonovich form gov-
erned by a single Wiener process

dy(t) = f(y(t)) dt + g(y(t)) ◦ dW (t) , y ∈ IRm , y(0) = y0 , (1)
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where f and g are real valued functions called the drift and diffusion coeffi-
cients, respectively; and W (t) is a scalar Wiener process. Stiff sdes are solved
using stochastic implicit methods. A major problem in constructing stochas-
tic implicit methods is the possibility of obtaining unrealized (unbounded)
solutions due to the nature of the Wiener process. To avoid unboundedness
Milstein et al. [6] introduced a modified Wiener increment ∆W̄ = β̄

√
h to

approximate W (t) , where

β̄ =


β , if |β| ≤ Ah ,

−Ah , if β < −Ah ,
Ah , if β > Ah .

(2)

For Ah =
√

2k| ln h| (k ≥ 1), the strong inequality

E(β̄ − β)2 ≤ hk, k ≥ 1 , (3)

is a sufficient condition to preserve the order of the method.

A stiffly accurate diagonally implicit stochastic Runge-Kutta (sadisrk2)
method of strong order 1 with a modified Wiener increment was constructed
by Burrage and Tian in [5] and stability analysis based on fixed stepsize im-
plementation shows that sadisrk2 method is suitable for solving stiff sdes.

In this paper we implement a variable stepsize mode of the sadisrk2
method. The major implementation issue is how to handle the modified
Wiener increment whenever there is a stepsize change such that integra-
tion is guaranteed to remain in the correct Wiener path from simulation to
simulation. The approach is based on the implementation used for regular
Wiener increment.

Numerical experiments show that significant improvement in accuracy is
gained when the modified Wiener is used compared to the regular Wiener.
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2 Variable stepsize algorithm

Richardson’s extrapolation in [2] for stepsize selection is described as follows:
at each integration time tn, a starting stepsize hn is chosen, the program com-
putes two numerical solutions at tn + hn . Let y be the numerical result of
one stepsize hn, then this time step is repeated in two steps of size hn/2,
denote by ỹ. The difference e = ỹ− y , estimates the local error rn and com-
putes the next stepsize. Since in stochastic setting that the error increases
by order 1/2, we have

rn =
‖e‖

2p+1/2 − 1
=

1

2p+1/2 − 1

√√√√ 1

N

N∑
i=1

( ei

tol

)2

, (4)

where p is the order of the method, in this case p = 1 . If rn ≤ 1 the step is
accepted, otherwise it is rejected and a new stepsize hn+1 such that e ≈ tol
which leads to

hn+1 =

(
1

rn

)1/p+1/2

hn . (5)

An alternative stepsize control strategy is the predictive-pid (Proportional
Integral Derivative) [7]:

hn+1 =

(
0.8 · tol

rn

)kI
(

rn−1

rn

)kP
(

r2
n−1

rnrn−1

)kD

hn , (6)

where k = p , kkI ∈ [0.1, 0.25] , kkP = 0.45 and kD = kI/4 = −kP /4 .

In the stochastic setting, an important factor in implementing variable
stepsize is how to maintain in the correct Brownian path from simulation
to simulation [1, 3, 4]. Here we use an efficient approach introduced in [4]
and outline the algorithm below. First, generate a fixed Brownian path with
fixed stepsize h and denote j1 =

∫ t0+h

t0
dW (s) . Suppose step h1 < h is taken,

then given j1 we need to simulate J1 on two sub-intervals [t0, t0 + h1] and
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[t0 + h1, t0 + h]. This involves using a new random variable Z:

J1(t0, t0 + h1) =
h1

h
j1 + Z , J1(t0 + h1, t0 + h) =

h2

h
j1 − Z , (7)

(where h2 = h−h1), then it is clear that J1(t0, t0+h1)+J1(t0+h1, t0+h) = j1

thus the sum is equal to the Wiener increment of the fixed path (that is, the
same trajectory is maintained). Also the following are satisfied

h1 := E((J1(t0, t0 + h1))
2) =

h2
1

h2
E(j2

1) + E(Z2) ,

h2 := E((J1(t0 + h1, t0 + h))2) =
h2

2

h2
E(j2

1) + E(Z2) , (8)

which leads to

E(Z2) =
h2 − h2

1 − h2
2

2h
=

h1h2

h
. (9)

Similarly the requirement that E(J1(t0, t0 + h1)J1(t0 + h1, t0 + h)) = 0
leads to E(Z2) = h1h2/h . Therefore Z is determined by sampling from
N ∼ (0, h1h2/h), and this ensures that the J1 samples on the subintervals
have the correct distribution and are on the correct path when moving from
simulation to simulation.

3 Modified Wiener increment

The implementation of a variable stepsize involving a modified Wiener pro-
cess requires determining the boundary value Ah whenever a step is changed.
Let ∆Wi, i = 1, . . . , N be a fixed stepsize Wiener path generated initially
along equidistant intervals t0 < t1 < . . . < tN with stepsize h where ∆Wi =
ξi

√
h , ξi ∼ N(0, 1) ,i = 1, . . . , N .

There are two modifications required for every step change. First, the
Wiener increment at the lower level (that is, of the fixed path); and second is
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to the actual Wiener increment for the current stepsize. Suppose at point tn,
∆Wn = ξn

√
h is the regular fixed Wiener increment in [tn, tn+1] , tn+1 =

tn + h . The modified Wiener increment is

∆W̄n =
√

hξ̄n =
√

h


ξn , if |ξn| ≤ Ah ,
−Ah , if ξn < −Ah ,
Ah , if ξn > Ah ,

(10)

where Ah =
√

2k| ln h| (k ≥ 1), and from (3) the mean-square difference is

E(∆Wn −∆W̄n)2 = E(
√

h(ξn − ξ̄n))2

= h E(ξn − ξ̄n)2 ≤ hk+1 . (11)

Suppose a new stepsize h1 < h is desired: let h2 = h− h1 , and denote h∗

as the sum of h1 and h2 (at this point h∗ = h). The Wiener increments for
the new subintervals [tn, tn + h1] and [tn + h1, tn+1] are, respectively,

∆Wn1 =
h1

h∗
∆Wn + Z , ∆Wn2 =

h2

h∗
∆Wn − Z ; (12)

where Z = ρ
√

h1h2

h∗
, ρ ∼ N(0, 1) thus Z ∼ N(0, h1h2

h∗
) . The modifications of

the above increments are, respectively,

∆W̄n1 =
h1

h∗
∆W̄n + Z̄ , ∆W̄n2 =

h2

h∗
∆W̄n − Z̄ . (13)

The new random variable Z̄ = ρ̄
√

h1h2/h∗ , where

ρ̄ =


ρ , if |ρ| ≤ AH ,

−AH , if ρ < −AH ,
AH , if ρ > AH ,

(14)

and AH is determined from the mean-square difference condition

E(Z − Z̄)2 ≤
(

h1h2

h∗

)k+1

. (15)
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This is equivalent to

h1h2

h∗
E(ρ− ρ̄)2 ≤

(
h1h2

h∗

)k+1

,

E(ρ− ρ̄)2 ≤
(

h1h2

h∗

)k

. (16)

Since E(ρ− ρ̄)2 < exp(−A2
H/2), the inequality (16) is fulfilled when

AH ≥
√

2k| ln h1h2/h∗| .

In order to remain in the same Brownian path, the mean and mean-square
sums must satisfy

E[∆Wn1 −∆W̄n1] + E[∆Wn2 −∆W̄n2] = E[∆Wn −∆W̄n] ≡ 0 ;(17)

E(∆Wn1 −∆W̄n1)
2 + E(∆Wn2 −∆W̄n2)

2 ≤ (h∗)k+1 . (18)

Clearly (17) is true as E(Z− Z̄) = 0 . It remains to show (18). By substi-
tuting ∆Wn1 and ∆Wn2 from (12) and their corresponding modifications (13)
into the left-hand side of (18), then rearranging and following (15) and (11)
we obtain

h2
1 + h2

2

(h∗)2
E(∆Wn −∆W̄n)2 + 2E(Z − Z̄)2

≤ h2
1 + h2

2

(h∗)2
(h∗)k+1 + 2

(
h1h2

h∗

)k+1

≤

[(
h1

h∗

)2

+

(
h2

h∗

)2
]

(h∗)k+1 + 2

(
h1

h∗

)k+1 (
h2

h∗

)k+1

(h∗)k+1

≤
(

h1

h∗
+

h2

h∗

)2

(h∗)k+1 ≤ (h∗)k+1 .
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Ah also need adjustment in the case when the succeeding stepsize (after
h1 is successful) exceeds h2. If the next step h1(new) satisfies h2 < h1(new) <
2h, then two Wiener increments from the lower level are used that is, in
the interval [tn + h1, tn + h] ∪ [tn + h, tn + 2h]. The corresponding Wiener
increment for the combined intervals is the sum ∆Wn2 + ∆Wn+1 = ∆W ∗

n+1 .
The modified version is ∆W̄ ∗

n+1 = ∆W̄n2 + ∆W̄n+1 or

∆W̄ ∗
n+1 =


∆W ∗

n+1 , if |∆W ∗
n+1| ≤

√
h∗new Ah∗new

−
√

h∗new Ah∗new
, if ∆W ∗

n+1 , < −
√

h∗new Ah∗new
,√

h∗new Ah∗new
, if ∆W ∗

n+1 >
√

h∗new Ah∗new
.

(19)

Here h∗new = h2 + h (h is the fixed stepsize) and Ah∗new
=

√
2k| ln h∗new| .

The same trajectory is maintained since the inequality condition is ful-
filled:

E[∆W ∗
n+1 −∆W̄ ∗

n+1]
2 = E[∆Wn2 −∆W̄n2]

2 + E[∆Wn+1 −∆W̄n+1]
2

≤ hk+1
2 + hk+1

≤ (h2 + h)k+1 .

The interval [tn+h1, tn+2h] is then subdivided into two subintervals with
length h1(new) and h∗new − h1(new), respectively, that is, [tn + h1, tn + h1 +
h1(new)] and [tn+h1+h1(new), tn+2h]. Evaluations of the Wiener increments
and their modifications—for the two subintervals—proceed as in (13).

4 SADISRK2 method

Consider an s-stage stochastic rk method with truncated Wiener process [5]

Y = (e⊗ I)yn + h(A⊗ I)g0(Y ) + ξ̄
√

h(B ⊗ I)g1(Y ) , (20)

yn+1 = yn + h(αT ⊗ I)g0(Y ) + ξ̄
√

h(βT ⊗ I)g1(Y ) , (21)



4 SADISRK2 method C586

or represented in tabular form

hA ξ̄
√

hB

hα βξ̄
√

h
, (22)

where A and B are s × s matrices, Y = (Y1, . . . , Ys)
T , αT and βT are s-

dimensional row vectors, e = (1, . . . , 1)T is a unit vector and ξ̄ is the modified
random variable. A 2-stage stiffly accurate diagonal method of strong order 1
referred to as the sadisrk2 method was constructed in [5] where the diagonal
components are made equal to enhance computational efficiency. The method
is symbolized by the tableau

(1−
√

2
2

)h 0 (1−
√

2
2

)ξ̄
√

h 0
√

2
2

h (1−
√

2
2

)h
√

2
2

ξ̄
√

h (1−
√

2
2

)ξ̄
√

h

√
2

2
h (1−

√
2

2
)h

√
2

2
ξ̄
√

h (1−
√

2
2

)ξ̄
√

h

5 Numerical experiments

Example 1 Consider a 2-dimensional linear sdes system given in Stratonovich
form

dU(t) = (A− 1

2
B2)U(t) dt + BU(t) ◦ dW , t ∈ [0, 1] , (23)

U(0) = [−5, 1]T ,

where

A =

[
−a a
a −a

]
and B =

[
b 0
0 b

]
.
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Table 1: Problem 1: a = 2 , b = 0.5 . Numerical performance of sadisrk2
method averaged over 500 trajectories. Regular Wiener vs modified Wiener.

with regular Wiener
tol ε tried fail avg. h iter fevals lu
2−6 4.19(-2) 4.67(-2) 9 0 0.1111 54 324 27
2−10 2.33(-2) 2.59(-2) 16 3 0.0776 95 555 48
2−12 7.27(-3) 8.05(-3) 29 7 0.0461 175 1007 88

with modified Wiener
tol ε tried fail avg. h iter fevals lu
2−6 2.92(-3) 3.02(-3) 9 0 0.1111 54 324 27
2−10 2.51(-3) 2.60(-3) 16 3 0.0786 94 546 47
2−12 1.55(-3) 1.65(-3) 29 7 0.0465 173 998 87

The system has an exact solution

U(t) = P

[
exp ρ+(t) 0

0 exp ρ−(t)

]
P−1U0

where ρ±(t) = (−a− 1
2
b2 ± a)t + bW (t),

P =
1√
2

[
1 1
1 −1

]
with P−1 = P ,

and components of the coefficient matrices are set a = 2 , b = 0.5 . Fixed
stepsize h = 0.1 is used to generate the fixed Wiener increments; the initial
stepsize is h0 = 0.05 . We compare numerical performances between using
regular Wiener increment and the modified Wiener, the results are averaged
over 500 simulations and presented in Table 1.

The numerical comparisons show that the sadisrk2 with modified Wiener
increment provides better approximation for relatively the same amount of
effort (work).
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Table 2: Example 2, α = 1 : sadisrk2 method.
σ = 0.2, with predictive-pid control

tol tried fail avg.h iter
Regular W 2−8 152 36 0.0690 912
Modified W 2−7 139 12 0.0630 834

σ = 0.5, with modified Wiener process
tol tried fail avg.h iter

Standard 2−11 1318 279 0.0077 7908
pred.-pid 2−10 1005 98 0.0088 6030

Example 2 Consider a simplified version of a Duffing-Van der Pol oscillator
written as a 2-dimensional sde with X1 and X2 representing the displacement
and speed, respectively,

dX1 = X2 dt ,

dX2 = {X1(α−X2
1 )−X2} dt + σX1 dW ;

where σ ≥ 0 governs the intensity of the multiplicative noise. To ensure the
simulation is on the correct path, a fixed Wiener path with stepsize length 0.1
is generated initially.

Comparison tests between regular and the modified Wiener process and
also between using standard error and predictive-pid controllers (kkI = 0.1 ,
kkP = 0.45) based on the same fixed Wiener path are presented below. We
set the initial values X1(0) = −4 ; X2(0) = 0 and parameters α = 1 ; σ = 0.2
and 0.5 . The results displayed in Figure 1 and Table 2, are from the same
fixed Wiener path.

The results from this example confirm the effectiveness of adopting the
predictive-pid control approach in implementing adaptive time-stepping based
on the sadisrk2 scheme with a modified Wiener increment. In the case of
σ = 0.2 , for similar average stepsize, the modified Wiener increment needs
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Figure 1: Example 2 α = 1 , σ = 0.2 . Comparison between using sadisrk2
method with regular Wiener vs modified Wiener, with predictive-pid stepsize
control. Top: phase planes are almost identical. Bottom: stepsize sequence,
the left is more dense.
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about 9% less steps and iterations, and 1/3 of the rejected steps than using
the regular Wiener.

6 Conclusions

We have introduced variable stepsize implementation involving a modified
Wiener increment based on a 2-stage stiffly accurate stochastic rk method.

The implementation requires extra effort in determining the restriction
for the modified random variables whenever there is a stepsize change, also
in order for the simulations to remain in the correct Wiener path.

Numerical comparisons showed that with the modified Wiener increment
we can obtain more accurate numerical solutions as opposed to the regular
Wiener. Also the predictive-pid stepsize control is an alternative approach
to increase efficiency.
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