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Predicting the extent of dissolution of a cloud
of particles entering a liquid.
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Abstract

Dissolution and dispersion of solids in liquids is important in areas
as diverse as extractive metallurgy and the dairy industry. A nu-
merical model is developed to examine the effect of dissolution upon
the dispersion of solids entering an initially quiescent bath. Com-
putations are based upon a pseudo two dimensional finite volume,
Eulerian–Eulerian, multiphase model. Dissolution is shown to signifi-
cantly affect dispersion of solids with solid liquid density ratios greater
than one. A dimensionless group equal to the ratio of the initial par-
ticle terminal velocity to the dissolution velocity is shown to be useful
in predicting the extent of dissolution at specific penetration depths.
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1 Introduction

Dissolution and dispersion of solids entering a liquid is important in areas as
diverse as extractive metallurgy, the dairy industry, and mineral processing.
The process may be as common as salt dissolving in water or, in an alloying
process, molybdenum particles dissolving in molten steel. Examples involv-
ing addition to metallurgical melts include: pelletized directly reduced iron
added to an electric arc furnace [1], or the addition of alloying materials such
as nickel or aluminium.

In previous work, a computational model successfully and accurately pre-
dicted the dispersion of inert solid particles in liquids. Suitable techniques
developed in the context of Nuclear reactor safety [2, 3, 4] were extended by
Smith [5] for the dispersion of a solids stream entering an initially quiescent
liquid.

Dissolution is a well understood process. Numerical and experimental
models developed in the metallurgical arena cover specific cases. For exam-
ple, nickel is often alloyed with zinc for galvanizing of steel. Langberg and
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Nilmani [6] developed a model of the dissolution of nickel into zinc. This
model, based upon work by Apelian et al. [7], was simplified to allow an
analytical rather than numerical solution.

While the above are just a few examples of modelling of solid particle
dispersion and dissolution, there is little modelling work of these two ef-
fects in conjunction. The inclusion of dissolution alters the dispersion of
solids in various ways. A changing particle diameter will alter the drag force
experienced and so can have a significant effect upon the penetration and dis-
persion. Mass transfer may lead to changes in the liquid density, momentum
transfer from the solid to the liquid phase, or liquid viscosity changes due to
additional components being dissolved into the liquid, all of which may be
important. For example, in the case of salt dissolution into water, density
variations normally result in natural convection [8]. We have previously [9]
discussed the effect of dissolution upon particles dropped into an initially
quiescent liquid. This paper extends that work to present and discuss the
dependence of penetration depth on a dimensionless group which is the ratio
of the initial particle terminal velocity to particle dissolution velocity.

2 Formulation

The present work examines the penetration of a short pulse of dissolving
spherical solid particles (of initial diameter 6.25mm) dropped into an initially
quiescent fluid. The pulse or cloud of particles dissolves and disperses as it
descends. The computational simulation is based on the model of Smith [13]
for non-dissolving particles.
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Figure 1: A schematic of the computational domain. Also shown is the
simulated dispersion of a 0.2 s pulse of spherical solid particles (d0 = 6.25mm,
ρs = 1500 kg/m3) dissolving over td = 4.22 s. The liquid velocity field is also
shown at time t = 3.0 s.
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2.1 Model development

The domain geometry is two dimensional rectangular with a centrally located
inlet, and pressure boundaries on the top wall to allow displaced fluid to exit
(see Figure 1). The penetration depth achieved is described by the vertical
centroid position (weighted by particle number density) at specific times.

Numerical simulation is undertaken using the two-fluid Eulerian–Eulerian
approach, where both the solid and liquid phases are modelled as contin-
uous, interpenetrating, and incompressible media. The relevant transport
equations are those for multiphase flow with mass transfer. The continuity
equations for dissolution take the form:

Liquid Phase

∂

∂t
(ρlαl) +∇ · (αlρlUl) = ṁls ; (1)

Solid Phase

∂

∂t
(ρsαs) +∇ · (αsρsUs) = −ṁls ; (2)

where ṁls represents the mass flow rate from the solid phase into the liquid
phase per unit volume. The momentum equations are:

Liquid Phase

∂

∂t
(αlρlUl) +∇ · (αlρlUlUl)

= ∇ · (αlτ l)− αl∇P + αlρlg − F
(D)
S − F

(MT)
S − F

(L)
S − F

(AM)
S ;(3)

Solid Phase

∂

∂t
(αsρsUs) +∇ · (αsρsUsUs)

= −αs∇P + αsρsg + F
(D)
S + F

(MT)
S + F

(L)
S + F

(AM)
S + F

(SP)
S . (4)
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Here the subscripts ’s’ and ’l’ refer to the solid and liquid phases respectively
and τ l is the liquid viscous stress term. Variables P , ρ and g, represent the
pressure, density and gravity, whereas α refers to the volume fraction. The
terms F

(D)
S , F

(MT)
S , F

(L)
S and F

(AM)
S denote interfacial momentum transfer

due to drag, mass transfer, lift and added mass, respectively. In the solid
phase an additional term F

(SP)
S denoting the effect of solids pressure in ad-

dition to the equilibrium pressure P is included to allow for particle-particle
interactions [10, 11]. This prevents particle volume fractions from rising to
unrealistic values (See Holbeach et al. [9] for further discussion of the various
terms). A second order upwind advection differencing scheme, with Van-Leer
flux limiting [12] is used for all transported variables as this helps reduce nu-
merical smearing at the phase boundaries. Grid independence is achieved
via a slightly non uniform (61× 157) grid, with an approximate grid spacing
of 0.8mm. Time step independence is achieved using fixed time stepping
of 2ms, while convergence is considered when all normalised residuals are
less than 2× 10−5 .

2.2 Dissolution

The particles are assumed to dissolve via a simple dissolution model, whereby
their diameter d decreases linearly with time according to equation (5) (See
earlier work by Holbeach et al. [9] for details).

d(t) = d0

(
1− t

td

)
for t ≤ td , (5)

where td =
ρsd0

km∆C
. (6)

Here d0, km and ∆C refer to the initial particle diameter, mass transfer co-
efficient, and concentration difference between the particle interface and the
fluid bulk, respectively. The parameter td is the dissolution time (that is,
the time it takes the particle to dissolve completely). The parameters ∆C
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and km are assumed to be constant. While the concentration difference is
unlikely to change significantly in dilute systems, km will depend upon both
the particle diameter and slip velocity. However, for the bulk of the parti-
cles dissolution history, Langberg and Nilmani [6] shows it to be relatively
constant for diameter.

By considering a short pulse (relative to the particulate dissolution time),
assumptions may be made regarding the dissolution of all particles in the
system.

• The pulse is short enough (tp = 0.2 s) that all particles may be re-
garded as having been exposed to the liquid for the same length of
time. This allows us to ignore the fact that solids entering first start
dissolving before those which enter later. In the simulation we assume
that dissolution begins once all the particles have entered.

• All particles experience the same (constant) slip velocity, in regard to
dissolution. This assumption allows us to assume that all particles have
the same (constant) mass transfer coefficient, allowing equation (5) to
be used for all particles. Note that the constant slip velocity assump-
tion only applies to the formulation of equation (5). Slip velocities
actually calculated within the two-fluid calculations will vary in time
and position, in general. However, this assumption is reasonable as
all particles fall at approximately the same rate through what can be
regarded as an essentially stationary liquid.

• Lastly, we assume that the influence of the dissolution process upon
the physical properties of the liquid phase, is negligible.

Given the above assumptions, the history of individual particles is then
irrelevant and all particles may be considered to dissolve at exactly the same
rate, and hence have the same radius at any time, given by equation (5).
Momentum, mass transfer and transient drag considerations associated with
the dissolution process, are discussed in earlier work by Holbeach et al. [9].
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3 Discussion

Figure 1 shows the typical evolution of particles dissolving and dispersing
after entering the domain. The particles spread horizontally and vertically
as they descend through the domain; however, their vertical settling velocity
is slowed by the inclusion of dissolution. This reduction in setting velocity
during the plume’s evolution is due to the changing instantaneous terminal
velocity as the particles reduce in size. The velocity field is also shown in
Figure 1. The fluid within the domain is initially stationary. The particles
impart some momentum to the liquid phase upon entering, setting up a liquid
velocity field, which in turn affects the particles’ motion. Such simulations
are discussed in more detail in Holbeach et al. [9].

The final depth achieved by dissolving spherical particles in the pulse,
was found to relate primarily to the instantaneous terminal velocity Ut of
the individual particles, their initial diameter d0, and the rate of dissolu-
tion td. Note that the terminal velocity of the particles is itself a function
of the solid and liquid densities, ρs and ρl, the particle size d(t), and liquid
viscosity. As the particles dissolve, their radius reduces which changes their
“instantaneous” terminal velocity.

For the special case of single small particle of diameter d the terminal
velocity is

Ut =
∆ρgd2

18µl

(Stokes flow) . (7)

Since particle relaxation time is very small for tiny particles, integrating
equation (7) will give the final depth (ymax) achieved for particles dissolving
according to equation 5 to be

Υ = 1
3
J , (8)

where Υ is the dimensionless penetration depth ymax/d0, and J is the di-
mensionless group, [Ut0 (td/d0)] which is ratio of the initial particle terminal
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velocity Ut0 to the dissolution velocity. Thus the depth achieved by isolated
particles in Stokes flow is directly proportional to J . In view of this simple
linear relationship for a single, small particle, it is of interest to consider
the relationship between J and Υ for a pulse of large particles. In the case
of swarms of multiple larger particles, additional effects such as hindered
settling and finite particle relaxation time, become significant.

Plots of Υ versus J derived from the simulation were produced at various
stages of dissolution (see Figure 2). However, as the particles are not in
Stokes flow initially, we use the following (empirical) relationship [14] to
calculate the initial terminal velocity, from the terminal Reynolds number
(Ret = Utρld/µl)

Ret =
(
2.33 Ga0.018 − 1.53 Ga−0.016

)13.3
, (9)

where

Ga =
d3ρl (ρs − ρl) g

µ3
l

. (10)

To achieve the same value for J , a denser dissolving particle must be
given a shorter dissolution time due to its relatively higher terminal velocity.
For example in our simulation involving particles of initial diameter d0 =
6.25mm; a simulation with td = 3.0 s and ρs = 3000 kg/m3, would have J =
333.1 , since Ut = 0.694m/s. If, however, ρs = 1010 kg/m3, then td = 63.8 s
to achieve J = 333.1 , then Ut = 0.032m/s.

It was found (Figure 2) that similar penetration depths are achieved by
dissolving solid particles with the same J value, and the same fractional
reduction in diameter. Individual points at the same J value represent sim-
ulations with different density ratios (between 1.01 < ρs/ρl < 3.0 ).

It appears that, as for single tiny particles, equation (8), log Υ varies
linearly with log J , but with a slope different from 1. However, the graph
must be used with caution as it is derived for a specific value of d0 (6.25mm)
and a linear decrease in particle diameter over time. The relationship for
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Figure 2: Dimensionless penetration depth is seen to increase with decreas-
ing J .
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particles of other initial diameters, and for dissolution coupled to the flow
field, will be the subject of further work.

This result implies that the final penetration depth is dependent primar-
ily upon the initial conditions, and not on the dissolution history of the
particles (for this special case of linear diameter change with time). Initial
particle Reynolds number (based on the initial terminal velocity) is of the
order of Re ≈ 1000 . In fact when ρs = 1100 kg/m3, d0 = 6.25mm, td = 6 s,
the terminal Reynolds number only drops below 1 for the final 0.5 s of the
dissolution. It is thus interesting to see that a relationship betweenΥ and J ,
similar to that for single particles in Stokes flow, exists. As expected, pen-
etration depths achieved are significantly higher than would be predicted if
the particles were in the Stokes regime, for a given J .

Settling velocities are higher than their instantaneous terminal velocity
would predict in all simulations, except towards the very end of their disso-
lution (that is, when particles are smallest). This discrepancy is largest for
short dissolution times (small J), and dense solids. The shorter the dissolu-
tion time, the less time the particle has to relax to its relevant instantaneous
terminal velocity. Similarly, for denser solids, their dissolution time is nec-
essarily shorter for a given J value because the initial terminal velocity is
now larger. Thus we see that for a given J denser solids penetrate further
than less dense solids. Nevertheless, the penetration depths for a given J are
similar, even over the range 1010 < ρs < 3000, especially for J > 20.

For J < 20 the dissolution time for the particles is so short that our
assumption regarding the pulse length being short relative to the dissolution
time is made invalid. This accounts for the discrepancy seen at large d/d0,
for J < 20 .
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4 Conclusion

A simple power law relationship was found between penetration depth and
the ratio of initial particle terminal velocity to the dissolution velocity for a
pulse of large dissolving particles, dropped into an initially quiescent liquid.
The relationship is similar to a corresponding relationship for settling single
tiny particles. The result allows prediction of the approximate penetration
depth that will be achieved by a cloud of particles where the particle radius
falls linearly with time during dissolution.
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