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Geometric probability based stereological
corrections
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Abstract

In mineral processing, a classic problem is that of estimating the
particle composition distribution from particle sections. This problem
occurs because mineralogical analysis is performed on particle sections
rather than the particles. Thus one wishes to infer three-dimensional
information (particle composition distribution) from two-dimensional
information (particle sections). There are a number of different tech-
niques available for estimating the particle composition distribution
and these are called stereological corrections. This paper provides
examples of very simple stereological corrections based on geometric
probability equations as well as the principle of maximum entropy.
The paper focuses on three methods. The first method is a simple
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entropy based model based on particle section information only. The
second method also uses entropy, but the entropy is based on relating
particles to particle sections, and is therefore more complex than the
first. The third model uses both the particle section distribution and
the linear intercept distribution. The most accurate model is that
which uses both particle sections and linear intercepts.
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1 Introduction

In order to optimize a mineral processing plant, an important consideration
is the particle composition distribution. In particular, one would like to
know the proportion of particles that are ‘liberated’ (containing only valu-
able mineral), ‘composite’ (containing more than one mineral) and ‘barren’
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Figure 1: Schematic diagram with three linear intercepts through a two
dimensional particle. Even though the particle is composite, the intercepts
can still appear liberated (intercepts 2 & 3). This problem is analogous to
intersecting particles with planar intercepts

(containing no valuable mineral). For mineral processing operations, one
wishes to maximize production and concentration of liberated particles.

The method of preparing particles for mineralogical analysis is to ran-
domly place them in a mount. The complete mount is then sectioned (nor-
mally only once) revealing a representative sample of particle sections. Be-
cause of the problem shown in Figure 1, when a set of particles are subject
to mineralogical analysis, the proportion of particle sections that appears
liberated is generally more than the actual proportion of liberated particles.
Assuming that particles are indeed mounted randomly and isotropically, the
resultant particle sections are more fully described as isotropic, uniform, ran-
dom particle sections.

The general term given to estimating particle composition distribution
using particle section information is called a stereological correction. The
stereological correction problem for mineral processing was first recognised
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by Gaudin [4]. He developed a simple stereological correction procedure,
where particles were assumed to be spherical caps, and those particles that
were composite were assumed to behave under sectioning as if they had a
composition of 50%.

The spherical cap shape, assumed by Gaudin, was fairly limited as min-
erals could actually be finely dispersed throughout particles. In this case the
stereological correction would be small, and much less than that assumed by
Gaudin. Thus Gaudin’s method became a methodology for estimating the
maximum correction required.

Gaudin’s approach lead naturally to the models developed by Jones and
Horton [10], and Hill et al. [7] who removed the assumption that compos-
ite particles behaved as if they had a composition of 50%, but allowed a
full distribution of particles and particle sections. In order to successfully
apply these models it was necessary to determine the complete distribution
of particle sections arising from particles of particular compositions. This
transformation method is called the kernel.

There have been many other methods developed to solve the problem.
The main methods are the kernel estimation methods of Miller and Lin [13],
King and Schneider [12]; and the geometric probability approaches of Bar-
bery [1], Gay [5] and Keith [11]. The geometric probability approach is
largely based on the equation developed by Davy [2].

2 Geometric probability

For the purposes of this paper, stereology is used as a general term that means
the relationship between particles and particle sections, whereas geometric
probability is used to represent those relationships that are independent of
particle shape and grain structure. The most basic geometric probability is
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Figure 2: Schematic diagram showing how the average distance between
pixel points is estimated. Pairs of points are chosen randomly and the dis-
tance between pairs is calculated. The average of the distance values is d

.

that of Delesse [3]:
Ev(cvV )

Ev(V )
=

Ea(caA)

Ea(A)
. (1)

Here cv is the volume composition of each particle, V is the volume of each
particle, ca is the area composition of each particle section, A is the area of
each particle section, Ev is the average with respect to particles and Ea is
the average with respect to particle sections. Here the particle information
is unknown, whereas the particle section information is known. The particle
referred to in the average refers to all particles in the mount, and not specif-
ically to those that are sectioned.Delesse’s equation implies that the average
composition of particles equals the average composition of particle sections.
However, the equation does not provide any insights into the problem of
estimating how many particles are liberated.

Davy [2] described an equation to estimate the variance of the particle
composition distribution. Davy derived this equation in a manner that im-
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Figure 3: Schematic diagram showing how the average distance between
pixel points is estimated. Pairs of points are chosen randomly and the dis-
tance between pairs is calculated. The average of the distance values is d11

.

plied that one must know the texture of the ore before breakage. Gay [6]
presented a modified and much simplified version of the equation that is more
appropriate to use on particle section data. The equation is based on point
sampling pixel data, and requires estimation of average distances between
pixels on particle sections. In particular two key parameters are: dpp (which
is the average distance between particle pixels on the same planar section);
and d11 (which is the average distance between mineral 1 pixels on the same
planar section). Estimation of these parameters is shown in Figures 2 and 3.
Here Gay’s equation is presented for binary particles (consisting of at most
two minerals) and the two minerals are identified as mineral 1 (the mineral
of interest) and mineral 2 (the associated gangue). Gay’s equation is

Ev(c
2
v V 2)

Ev(V 2)
=

Ea(c
2
a d11 A2)

Ea( dpp A2)
. (2)

If particle size is independent of particle composition, then, for the left-hand
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side of equation (1), the volume terms can be removed.

Thus the left-hand terms in equations (1–2)

3 Methods of solution

The stereological problem does not have a set solution; and there are many
possible methods. In this paper, focus is only given to methods based on
geometric probability and the principle of maximum entropy. The various
methods of solution are grouped into:

• a simple entropy method using particle sections;

• an entropy method based on particle sections only, but more detailed
than the simple entropy method;

• a simple method based on both linear intercepts and particle sections

These methods are discussed in the following sections.

3.1 A simple entropy method using particle sections

If grain size is infinitesimally small, then it follows that:

• the parameters d11 and dpp given in Section 2 will be the same value;

• the composition of each particle sections will be the same as for that
of the particle from which they were derived; and

• the second moment of the particle composition distribution equals that
of the second moment of particle composition distribution.
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The latter property is also true conversely. That is, if the second moments
of the particle composition distribution and the particle section composition
distribution are the same, then these two distributions must be the same.
This information can be used in the estimation procedure; however, there is
still insufficient information available to determine the complete distribution.
A mathematical approach for estimating distributions where there is insuffi-
cient information is the entropy approach. This method is used to formulate
a ‘likely’ distribution given the available information. Informative references
are by Jaynes [8, 9] and Shannon and Weaver [14].

In order to formulate the problem, the composition distribution is divided
into composition classes (also called bins) with the twelve bins being compo-
sition classes [0%], (0–10%], (10–20%], . . . , [100%]. lv,i denotes the particle
composition distribution (with i representing particle class), and la,i is the
particle section composition distribution. Thus the probability entropy is
formulated as

H = −
∑
i=1

lv,i[ln(lv,i)− ln(la,i)] , (3)

constrained by, from (1), ∑
i

lv,ici = cv , (4)

and, from (2), ∑
i

lv,ic
2
i = c2

v . (5)

There is also the natural constraint:∑
i

lv,i = 1 . (6)

The problem then is to maximise the probability entropy, constrained by
equations (4–6). The solution is easily determined using Lagrange multipli-
ers. Assign: λ to equation (4), µ to equation (5), and a to equation (6). The
solution is

ln(la,i)− ln(lv,i)− 1 + λci + µc2
i + a = 0 . (7)
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With the substitution
A = ea−1 , (8)

the solution becomes

lv,i = Ala,i exp
(
λci + µc2

i

)
. (9)

The parameters A, λ and µ are determined so as to satisfy the constraints.

3.2 Method using relationships between particles and
particle sections

Keith [11] developed a model based on entropy and geometric probability,
which involves determining the probability relationship between particles and
particle sections. For example, what is the probability that a particle section
of a particular composition originally came from a particle of a particular
composition. Here a simplified version of Keith’s model is represented. Be-
cause this method uses more equations than the simple entropy model it is
expected to perform better.

Consider the composition distributions (particles and particle sections)
split into the 12 conventional bins. Denote pi,j as the probability that a par-
ticle section in the jth particle section composition bin came from a particle
in the ith particle composition bin. The particle composition distribution is
then

lv,i =
∑

j

la,jpi,j . (10)

With this probability representation, Delesse’s equation (1) applied to each
particle bin (represented by i) gives∑

j

la,jpi,j(cj − ci) = 0 , (11)
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where cj is average composition of particle sections in jth bin and ci is average
composition of particles in ith bin.

In addition there is also the natural constraint∑
i

pi,j = 1 . (12)

Thus the probability entropy (based on an initially uniform prior with respect
to i and j) is

H = −
∑
i,j

la,jpi,j ln pi,j . (13)

Equation (2) is then ∑
i,j

la,jpi,jc
2
i = c2 . (14)

Maximising the entropy with respect to the constraints (11), (12) and (14)
gives

pi,j = Aj exp
[
µi(ci − cj) + λ(c2

i − c2)
]

. (15)

The various parameters are all adjusted to ensure that the constraints (11),
(12) and (14) are satisfied.

3.3 Simple model using both linear intercepts and
planar sections

In the previous section particle sections were used as a prior. As linear inter-
cepts provide a worse estimate of the particle composition distribution than
the particle sections, a method based only on linear intercepts would expect
to behave worse than that based on planar intercepts. However there is an
interesting variation that allows us to use both distributions (linear intercepts
and planar sections) as priors. The basic idea is to estimate particle compo-
sition distribution as a function of variance. The formulation is constructed
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such that when the variance is that for linear intercepts, the composition
distribution is the same as that for linear intercepts, and when the variance
is that for planar intercepts, the composition distribution is the same as that
for planar intercepts. Using our original notation, write this equation as

lv,i = la,i + ωla,i − ll,i , (16)

where

ω =
Var(ca)− Var(cv)

Var(cl)− Var(ca)
. (17)

Note that, for single-sized particles, because

Var(cl) > Var(ca) > Var(cv) , (18)

ω is greater than 0.

4 Discussion

Figure 4 shows the various composition distributions (in cumulative form).
The distributions are for linear intercepts, planar sections, actual particles,
simple entropy model, combined model (using both planar sections and lin-
ear intercepts) and using planar intercepts only. The results show that (for
the single case given): the linear intercept composition distribution provides
a dreadful estimate of particle composition distribution; the particle section
composition distribution, although better, still provides a poor estimate of
particle composition distribution; the simple entropy model, although pro-
viding an even better estimate of particle composition distribution, is still
not adequate; the advanced entropy model for particle sections provides quite
a good estimate of particle composition distribution; however, the best esti-
mate is obtained by the entropy method using both particle section compo-
sition distribution and linear intercept composition distribution.
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Figure 4: Collated composition distributions for the single test case with
simulated spherical caps
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5 Conclusions

The results presented here were for a single case, and clearly more com-
parisons are required before any strong conclusions can be made. However,
both the combined model and the advanced entropy model show promise of
providing reasonably straightforward methods of stereological correction.
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