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Finite difference solution to the Poisson
equation at an intersection of interfaces

D. A. Jarvis∗ B. J. Noye†

(Received 8 August 2003, revised 8 February 2004)

Abstract

We consider the solution u to Poisson’s equation L(pu) = f on a
polygonal domain Ω ∈ R2, which itself is composed of polygonal sub-
domains Ωi, where L is the Laplacian operator and the coefficient p is
piecewise constant, with value pi in region Ωi. At a point S of inter-
section of the interfaces between Ωi and adjacent regions the solution
may have singular components. These, if present, may be severe and
will degrade the convergence of the basic methods of numerical ap-
proximation to the solution u in the locality of S. Elaborate methods
are required to accurately estimate the singular components, or stress
intensity factors, or to improve the accuracy of the numerical solution
near S. When the interfaces are straight lines on a Cartesian grid,
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with homogeneous interface conditions, we show that a remarkable
pattern of symmetries of the singular components leads to a simple
finite difference solution at the point of intersection S, and to an esti-
mate of the stress intensity factors enabling extraction of the singular
components and improved accuracy at points close to S.
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1 Introduction

We shall study the solution u to Poisson’s equation

L(pu) = f on Ω ∈ R2 , (1)

with boundary conditions Bu = g on ∂Ω, the boundary of Ω, with L the
Laplacian operator, and B specifying Dirichlet, von Neumann or mixed
boundary conditions. Ω may be subdivided into discrete regions Ωi on
which p, which is piecewise constant, assumes the positive value pi. The in-
terface, the line Γij, is the common boundary of adjoining regions Ωi and Ωj

across which we require homogeneous interface conditions

u|Γij−
= u|Γij+

(2)
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and

pi
∂u

∂τij

∣∣∣∣
Γij−

= −pj
∂u

∂τji

∣∣∣∣
Γij+

, (3)

where Γij− and Γij+ indicate the limiting values in Ωi and Ωj respectively
at Γij, and τij is the outer unit normal to Γij from Ωi. Elliptic boundary value
problems may have singular solutions which, even if the data f and g are
smooth, may arise at irregular points, termed vertices, which include: corners
on ∂Ω; points on ∂Ω where the boundary conditions change; corners on an
interface and points where interfaces meet or intersect another interface or
the boundary [3]. With few restrictions the solution u may be decomposed

u = w +
∑

S

vS , (4)

where w is a regular part whose smoothness depends on the smoothness
of f and g, and vS the singular part associated with each vertex S [6, 7].
vS is composed of the eigenfunctions, solutions to L(pu) = 0, in the vicinity
of S. If S is the origin of polar coordinates r, θ, with θ denoted θi within Ωi,
and ωi the internal angle included by the boundary of Ωi at S, then the
eigenfunctions vS with eigenvalue λ, in the vicinity of S have the form:

u(r, θ) = ζ(r)rλΨ(θ) where λ 6∈ N ; (5)

u(r, θ) = ζ(r)rλ {ln(r)Ψ(θ) + (θ/λ)Ψ′(θ)} where λ ∈ N . (6)

ζ(r) is a smooth cut-off function with value 1 for 0 ≤ r < r0 and smoothly
decays to 0 for r > rb > r0 where rb is less than the radial distance to any
other vertex, boundary or interface. The value of λ, which determines the
severity of the singularity, will depend on the included angle ωi, and if S is
at an interface, the values of pj belonging to all Ωj for which S ∈ Ω̄j. The
basic finite element method (fem) has impaired accuracy and convergence
in the presence of singular solutions, as shown in Figure 1 [1, 8]. In this
paper we show that by a remarkable pattern of symmetries of the singular
solutions finite difference (fd) methods are valid and will converge at the
intersection S with order h, at points adjacent to S with order hλ, and that
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Figure 1: (a) The region Ω and subregions Ωi. Ψ(θ) (see equations (8)–(12))
with the lowest eigenvalue λ ≈ 0.27 determines the value on the boundary at
x, y = ±0.5, and satisfies L(pu) = 0 on Ω. (b) The exact solution. (c) and
(d) are the error of the approximation by basic fem, identical to the fd
solution, on a regular grid of size h. The error is greatest at the nodes
adjacent to the origin, and converges only slowly with decreasing h.
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the most singular components are reliably estimated from point values close
to S by exploiting a discrete p-orthogonality of the eigenfunctions. The latter
may be used in fd or fem to extract the singular components leading to a
more accurate solution.

2 Singular solutions at interface intersection

Let all Ωi be rectangular. At any intersection of interfaces S not on ∂Ω there
will be four regions Ωi, i = 1, 2, 3, 4 proceeding anticlockwise around S, with
the line θ = 0 coincident with Γ14. Ψ(θ) in (5) is the solution to, and λ an
eigenvalue of, the periodic Sturm–Liouville system

∂2Ψ(θi)

∂θ2
i

+ λ2Ψ(θi) = 0 for i = 1, 2, 3, 4 , (7)

satisfying (2) and (3) at a constant radius r < r0 from S [6]. Although (6)
satisfies (7), it cannot simultaneously satisfy (2) and (3), and thus the only
singular solutions are given by (5). The general form of Ψ(θ) with the in-
terfaces being two straight lines intersecting at angle 0 < ϕ ≤ π/2 with
supplementary angle ψ = π − ϕ is given by Kellogg [5]:

Ψ(θ) =


cos(λn(ψ − b1)) cos(λn(θ − ϕ+ a1)) , 0 ≤ θ ≤ ϕ ,

cos(λna1) cos(λn(θ − π + b1)) , ϕ ≤ θ ≤ π ,

cos(λnb1) cos(λn(θ − π − a1)) , π ≤ θ ≤ π + ϕ ,

cos(λn(ϕ− a1)) cos(λn(θ − ϕ− π − b1)) , π + ϕ ≤ θ ≤ 2π .

. (8)

With the aid of computerised algebraic manipulation and trigonometric iden-
tities when ϕ = π/2 we derived explicit expressions for Ψ(θ) and λ: define

χ1 =
√
p1p2p3 + p1p4p3 + p1p4p2 + p4p2p3 ; χ2 =

√
p1 + p2 + p3 + p4 ; (9)
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and let

γ =
2

π
tan−1

(
χ1χ2

p1p3 − p2p4

)
for p1p3 6= p2p4 . (10)

The eigenvalues λ of Ψ(θ) are then the positive values of

λn ∈ {λ : λ = 2m± γ, m = 0, 1, 2, 3 . . . , λ > 0} , n = 0, 1, 2, 3, . . . , (11)

with

a1 = ± 1

λn

tan−1

(
p2χ2

χ1

)
, b1 = ∓ 1

λn

tan−1

(
p3χ2

χ1

)
, (12)

where the sign on γ in (11) corresponds with the sign in a1 and its inverse
in b1. Kellogg’s second set of equations similar to (8) for sin functions are
identical to (8) when ϕ = π/2. Symmetries in these eigenfunctions valid for
all λn are:

Ψ(0)

Ψ(π)
= −p2 + p3

p1 + p4

;
Ψ(π/2)

Ψ(3π/2)
= −p3 + p4

p1 + p2

; (13)

p1Ψ(π/4) + p2Ψ(3π/4) + p3Ψ(5π/4) + p4Ψ(7π/4) = 0 ; (14)

Ψ(π/4)−Ψ(3π/4) + Ψ(5π/4)−Ψ(7π/4) = 0 . (15)

When ϕ is a rational fraction of π there are solutions to (7) with integral
eigenvalues. These eigenfunctions or their derivatives have a value of zero
on the interfaces. Let ϕi = (i − 1)π/2 , i = 1, 2, . . . , 5 . These non-singular
eigenfunctions, which are members of w in (4), for i = 1, 2, 3, 4 , are:

wA(θ) = (1/pi) cos(λA,n(θi − 3π/4)) , ϕi ≤ θi ≤ ϕi+1 ; (16)

wB(θ) = sin(λB,n(θi − 3π/4)) , ϕi ≤ θi ≤ ϕi+1 ; (17)

wC(θ) = cos(λC,n(θi − 3π/4)) , ϕi ≤ θi ≤ ϕi+1 ; (18)

wD(θ) = (1/pi) sin(λD,n(θi − 3π/4)) , ϕi ≤ θi ≤ ϕi+1 ; (19)

with λA,n = λB,n = 4n + 2 , λC,n = λD,n = 4n , n = 0, 1, 2, 3, . . . . Together
with (8) they form a complete p-orthogonal basis of functions, which may be
used to expand u(r, θ) at a fixed radius r < r0 from the origin at S. If we let
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φk(θ), k = 0, 1, 2, . . . , be a member of the complete set of eigenfunctions (8),
(16)–(19) for all λ, then in the locality of S at radius r < r0

u(r, θ)|r = w +
∑

n

cnr
λnΨn(θ) =

∞∑
k=0

κ?
kr

λkφk(θ) =
∞∑

k=0

κkφk(θ) . (20)

If φk(θ) is member Ψn(θ) in (5), then cnr
λn ≈ κk , with the accuracy of

the approximation depending on how much of w, which depends on f , is
composed of Ψn at radius r in the series (20), and this by how much f
varies with r in the interval [0, r]. From the symmetries (13)–(15) and the
values of (16)–(19) the eigenfunctions φk(θ) also satisfy a limited discrete
p-orthogonality when evaluated at θ = jπ/4 , j = 0, 1, 2, . . . , 7 . If we restrict
the set φk of eigenfunctions to those of the lowest four eigenvalues of (8) and
the lowest eigenvalue in each of (16)–(19), then

7∑
j=0

p∗jφk(θi)φm(θi) =

{
0 , k 6= m or φk, φm ∈ {wD(θ)} ,
M 6= 0 , k = m, φk, φm 6∈ {wD(θ)} ,

(21)

p∗j =

{
pi , i = (j + 1)/2 , j odd,

(pi + pi+1)/2 , i = j/2 , p0 ≡ p4 , j even .
.

The discrete p-orthogonality fails for wD(θ), for on θ = jπ/4 , wD(θ) = 0 .
The coefficients cn are estimated from κk in (20) by using (21). The coeffi-
cients of the higher order eigenfunctions in each class will be aliased into the
lower order coefficient, but from (20) their contribution will be reduced by
the ratio rλn+4m/rλn � 1 for r < 1 , m = 1, 2, 3, . . . . In real situations the
highly oscillatory singular eigenfunctions are unlikely, and it is those of the
lowest order which are most likely and which cause the greatest degradation
in convergence. Estimating the coefficient enables the value of the singular
eigenfunctions to be extracted in the region of S, permitting improved ac-
curacy by a second approximation on the remaining smooth components, as
employed in multigrid fem [2], and explained in Figure 3(b).
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(a) model solution on x axis (b) fd derivation at vertex

Figure 2: (a) The singularity of the solution in Figure 1: an unbounded
gradient at the origin. (b) schematic of derivation of the fd formula at the
origin. The dashed arrows indicate taking the inner points to the limit at
the origin.

3 Finite difference formulation

3.1 Solution at the vertex

fd derived approximations to u are based upon its Taylor series (ts) expan-
sion which has a remainder term Rn, which for a function fT (z) is

Rn(z) =
hn

(n− 1)!

∫ 1

0

(1− t)n−1f
(n)
T (z + th) dt . (22)

It is generally required that f
(n−1)
T (z) be absolutely continuous, thus bounded,

in [z, z + h] for Rn(z) to be finite. The series converges if limn→∞Rn(z) =
0 . Figure 2(a) clearly shows that the x partial derivative of the singular
solution of the model problem of Figure 1 is unbounded at the origin. For
the moment we shall assume that u is sufficiently smooth in each region Ωi
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for ts expansion, and use Cartesian (x, y) coordinates with the axes on the
interfaces and θ = 0 being the +x axis. By taking limits of u and its partial
derivatives at points adjacent to the interfaces (see Figure 2(b)) and using
the continuity and interface conditions (2)–(3), a fd expression is obtained
to estimate u(0, 0) from values of u on the interfaces at distance h from S
and the limiting values of f in each quadrant Ωi at S:

2

h2
{(p1 + p4)(u(h, 0)− u(0, 0)) + (p1 + p2)(u(0, h)− u(0, 0))

+ (p2 + p3)(u(−h, 0)− u(0, 0)) + (p3 + p4)(u(0,−h)− u(0, 0))}
= p1f(0+, 0+) + p2f(0−, 0+) + p3f(0−, 0−) + p4f(0+, 0−) +O(h) .

(23)

If u did have singular components, the symmetry (13) exactly cancels all the
singular components (5) and all their derivatives in the derivation of (23).
Thus (23) remains valid with singular components vS in u. A similar limiting
procedure on the diagonals, decomposing the partial derivatives along the
diagonals into x and y partial derivatives, leads to a fd expression on x = ±y :

2

h2
{p1(u(h, h)− u(0, 0)) + p2(u(−h, h)− u(0, 0))

+ p3(u(−h,−h)− u(0, 0)) + p4(u(h,−h)− u(0, 0))}
= p1f(0+, 0+) + p2f(0−, 0+) + p3f(0−, 0−) + p4f(0+, 0−) +O(h) ,

(24)

and the symmetry (14) exactly cancels all singular components and their
derivatives at all stages in the derivation. In (23) the symmetry (13) balances
the singular components on the x axis independently of those on the y axis,
so the solution may be split, but in (24) symmetry (14) requires the value on
all axes for cancellation of the singular components, so may not be split. The
symmetries (13) and (14), which permit fd formulation at S by cancellation
of the singular components, apply only on the axes coincident with and at
angle π/4 to the interfaces, as fortuitously used in most fem schemes [8],
and do not pertain to orthogonal axes at other orientations.
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Figure 3: (a) The error in the fd estimate of fT (z) = zλ , solution to
f ′′T (z) = λ(λ − 1)zλ−2 , at z = h1 from ‘boundary’ values fT (0) and fT (h1 +
h2) = 0.2λ . (b) From an initial estimate of solution u to L(pu) = f , the
value at points ⊕, at constant radius from the centre, enables estimation
of the stress intensity factors and subtraction of the singular eigenfunctions
from the initial estimate at the points •, which become an inner ‘boundary’.
A new estimate of the remaining smooth components of u is found internal
to this ‘boundary’, and the singular eigenfunctions are then added back to
the points • and to the new estimate of u internal to them.
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3.2 Solution adjacent to vertex

fd approximations to (1) across an interface at points away from S may be
formed using limits of u and its derivatives at the interface, utilising the inter-
face and continuity conditions [4]. At a point on an interface adjacent to S,
for example (h1, 0), any fd expression will require the value u(0, 0). With
singular components (5) with λ < 1 , all partial derivatives ∂nu(r, θ)/∂rn =
∂nu(x, 0)/∂xn are unbounded as r and x → 0+ , as shown in Figure 2(a),
violating the general requirements for the existence of Rn in (22). When
fT (z) = zα with α > 0 , α 6∈ N it is possible to evaluate (22)

Rn(h1) =
(−1)nh

(α)
1 (α− 1)!

(n− 1)!(α− n)!
, (25)

but limn→∞ Rn+1(h1)/Rn(h1) = 1 and limn→∞Rn(h1) 6= 0 so that the ts
does not converge. The ts with remainder Rn, however, is a correct repre-
sentation of fT (z) = zα . The complete fd expression of (1) at (h1, 0), with
adjacent x axis points (0, 0) and (h1 + h2, 0), is

p1

2
f(h1, 0+) +

p4

2
f(h1, 0−) = −(p1 + p4)

(h1 + h2)

(h2
1h2)

u(h1, 0)

+
(p1 + p4)

(h1 + h2)h1

u(0, 0) +
(p1 + p4)

(h1 + h2)h2

u(h1 + h2, 0) +
p1

h2
1

u(h1, h1)

+
p4

h2
1

u(h1,−h1) +
(p1 + p4)

(h1 + h2)

(
R1

h1

+
R2

h2

)
+
p1R

+
y + p4R

−
y

h2
1

.

(26)

R1 and R2 are the truncation error terms Rn(z) in (22) with n = 3 for the
x partial derivative ts of u at (h1, 0) expanded about (0, 0) and (h1 + h2, 0)
respectively, and R+

y and R−y are the error terms for the limits of the y partial
derivative ts of u at (h1, 0) expanded about (h1, h1) and (h1,−h1). Let
h = K

√
h1h2 and h1 = K1h2 for some bounded positive constants K, K1.

The convergence of (26) is determined by the R1, R2 and Ry terms. For
bounded derivatives this is O(h). The vS component of R1 is given by (25)
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so that R1/(h1(h1+h2)) would appear to be O(hλ−2) which does not converge
for λ < 2 as h → 0 , but this truncation error arises in the approximation
of ∂2vS/∂x

2 which is unbounded as x → 0 rendering convergence by this
criterion meaningless. The convergence of (26) is dominated by the largest
error term, usually component vS of u in R1. In (26) let u = vS , f = 0 and
the values of vS at (0, 0), (h1, h1), (h1,−h1) and (h1 + h2, 0) be regarded as
known boundary values. The error in the estimate v̂S(h1, 0) from (26) is then

vS(h1, 0)− v̂S(h1, 0) =
h2

1h2

(h1 + h2)2

(
R1

h1

+
R2

h2

)
+
h2(p1R

+
y + p4R

−
y )

(p1 + p4)(h1 + h2)
. (27)

The term with R1 in (27) is O(hλ) , and usually determines the convergence
of (26). This agrees with the pointwise convergence for basic fem[1]. The
ratio q = h2/h1 is chosen by solution to

−qλ2 + qλ− 2q + 2(1 + q)λ − q2λ(λ− 1)− 2 = 0 , (28)

so that R1/h1 = −R2/h2 , (Figure 3(a)), reducing the error. This is similar
to h-fem using geometric grid division in the interval(s) adjacent to the
singularity [8]. Improved accuracy to the solution of the model problem
using geometric division of the first interval h, and extraction, is shown in
Figure 4.
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