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Discrete thin plate spline smoothing in 3D

S. Roberts∗ L. Stals†
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Abstract

The thin plate spline method is often used to fit data in high di-
mensions. Standard thin plate splines require the solution of a dense
linear system of equations whose size increases with the number of
data points and can be expensive when used on large data sets. In
this paper we present a discrete thin plate spline method that uses
polynomials with local support defined on finite element grids. The
resulting system of equations is sparse and its size depends only on
the number of nodes in the finite element grid so this method is ef-
ficient when dealing with large data sets. Theory is developed for
general d-dimensional data sets and several example results are given
for 3D models.
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1 Introduction

The problem of fitting data in high dimensions arises in a number of ap-
plications including; data mining, 3D reconstruction of geometric models,
finger print matching, image warping, medical image analysis and optic flow
computations.

A commonly used technique to fit the data is the thin plate spline method.
This method is favoured because it is insensitive to noise in the data and it
minimises the bending energy of a thin-shell object. The thin plate spline
for a general domain Ω, as formulated by Wahba [12] and Duchon [5], is the
function f that minimises the functional

Jα(f) =
1

n

n∑
i=1

[
f(x(i))− y(i)

]2
+ α

∫
Ω

∑
|ν|=2

(
2

ν

)
(Dνf(x))2 dx , (1)
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where ν = (ν1, . . . , νd) is a d dimensional multi-index, |ν| =
∑d

s=1 νs , the
predictor variable x is in Rd, and x(i) and y(i) are the corresponding ith pre-
dictor and response data value (1 ≤ i ≤ n). The smoothing parameter α
controls the trade-off between smoothness and fit. In the limit α → 0 the
function f becomes an interpolant. If α is large, f becomes very smooth but
may not reflect the data very well. Techniques for choosing α appropriately
can be found in [12].

Often radial basis functions are used to represent f as they give an ana-
lytical solution to the minimum of the functional in Equation (1):

f(x) =
M∑

k=1

aφk(x) + α
n∑

i=1

wiU(x, x(i)) ,

where φk are monomials of order up to 1 and U are suitable radial basis
functions. The coefficients aT = (a1, . . . , aM) and w = (w1, . . . , wn) , are
found by solving

(K + nαI)w + Pa = y ,

P T w = 0 ,

where Kij = U(x(i), x(j)) , Pij = φj(x
(i)) and I is the identity matrix. See

for example [2, 8].

The system is dense and its size is directly proportional to the number of
data points. In the case of, for example, data mining, 3D reconstruction of
models from mri data or interpolation of geophysical data sets, the number of
data points is very large and hence the system is very expensive to compute.
Although this initial approach was improved by a number of later works [3, 9]
these techniques still lead to complex data structures and algorithms that
usually require O(n) amount of memory.

In this paper we propose a discrete thin-plate spline method that uses
polynomial basis function with local support defined on a finite element mesh.
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The resulting system of equations is sparse and its size depends only on
the number of grid points in the finite element mesh. A preconditioned
conjugate gradient (cg) method is used to solve the system of equations.
This method is computationally cheap for the interpolation of large data
sets. We demonstrate this technique by reconstructing models in 3D.

2 Discrete thin plate splines

Standard thin plate splines require the solution of a dense linear system of
equations whose size increases with the number of data points and therefore
is expensive when used on large data sets. Roberts et al. [4, 6, 7] have
developed a finite element approximation of thin plate splines

The smoothing problem is approximated with finite elements so that the
discrete smoother f is a piecewise multi-linear function. In vector notation

f(x) = b(x)T c .

The idea is to minimise Jα over all f of this form. Unfortunately the smooth-
ing term is not defined for piecewise multi-linear functions, but we use the
non-conforming finite element principle to introduce piecewise multi-linear
functions u = (bT g1, . . . , b

T gd) to represent the gradient of f . The functions
f and u satisfy the relationship∫

Ω

∇f(x) · ∇v(x) dx =

∫
Ω

u(x) · ∇v(x) dx , (2)

for all piecewise multi-linear function v. This is equivalent to the relationship

Lc =
d∑

s=1

Gsgs , (3)

where L is a discrete approximation to the negative Laplace operator and
(G1, . . . , Gd) is a discrete approximation to the gradient operator.
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Now consider the minimiser of the functional

Jα(c, g1, . . . , gd)

=
1

n

n∑
i=1

[
b(x(i))T c− y(i)

]2
+ α

∫
Ω

d∑
s=1

∇(bT gs) · ∇(bT gs) dx

=
1

n

n∑
i=1

[
b(x(i))T c− y(i)

]2
+ α

d∑
s=1

gT
s Lgs . (4)

Our smoothing problem consists of minimising this functional over all vec-
tors c, g1, . . . , gd subject to the Constraint (3).

The boundary conditions are assumed to be Dirichlet with c, g1, . . . , gd

all set to zero along the boundary. This means that the interpolating spline
will be clamped and set to zero at the boundary. Other types of boundary
conditions may be used and this will be the subject of future research.

The function defined by f(x) = b(x)T c provides a smoother that has
essentially the same smoothing properties as the original thin plate smoothing
spline, provided the discretisation is small enough [7].

3 Interpolation splines of 3D data sets

In the 3D case the discrete minimisation problem (4) is equivalent to finding
the minimum of

Jα(c, g1, g2, g3) = cT Ac−2dT c+yT y+α
(
gT

1 Lg1 + gT
2 Lg2 + gT

3 Lg3

)
, (5)

subject to
Lc−G1g1 −G2g2 −G2g2 = 0 . (6)

The matrices L, G1, G2 and G3 are independent of the data points but the
matrix

A =
1

n

n∑
i=1

b(x(i))b(x(i))T ,
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and vector

d =
1

n

n∑
i=1

b(x(i))y(i) ,

must be assembled by sweeping through the data points. The matrix A is
symmetric indefinite and sparse.

Using Lagrange multipliers, the Minimisation Problem (5) is rewritten as
the solution of the linear system

A 0 0 0 L
0 αL 0 0 −GT

1

0 0 αL 0 −GT
2

0 0 0 αL −GT
3

L −G1 −G2 −G3 0




c
g1

g2

g3

w

 =


d
0
0
0
0

 , (7)

where w is a Lagrange multiplier associated with Constraint (6).

One of the advantages of this approach is that the size of the linear
system depends on the discretisation size m instead of the number of the
data points n. All sub-systems in (7) have dimension m. The time required
to assemble the matrix does depend on n (that is, to build A and d) but it
depends linearly on n and the observation data only have to be read from
secondary storage once if using a uniform finite element grid.

3.1 Solution of linear system

One approach to solve Equation (7) is to eliminate all the variables except g1,
g2 and g3: that is,αL + GT

1 ZG1 GT
1 ZG2 GT

1 ZG3

GT
2 ZG1 αL + GT

2 ZG2 GT
2 ZG3

GT
3 ZG1 GT

3 ZG2 αL + GT
3 ZG3

g1

g2

g3

 =

GT
1 L−1d

GT
2 L−1d

GT
3 L−1d

 , (8)
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where Z = L−1AL−1 , c = L−1 (G1g1 + G2g2 + G3g3) . See that the sys-
tem (8) is symmetric positive definite and thus is solved efficiently using the
preconditioned cg method. The preconditioner used here is

M =

L−1 0 0
0 L−1 0
0 0 L−1

 .

Applying Z to a vector equates to solving a system of equations involving
the Laplacian; similarly when applying the preconditioner M so it is impor-
tant to use an efficient Poisson solver. Fortunately there are techniques, such
as the multigrid method, that are optimal for the solution of such problems.

4 Implementation details

The above technique was implemented in a finite element multigrid code de-
veloped by Stals [10]. The results presented in this report use a uniformly re-
fined tetrahedron grid, but we are also investigating the use of adaptive grids.

The computational model consists of two stages: building the system of
equations given in (8), and solving the system of equations. The cg method
as described in Section 3.1 was used to solve the system. The multigrid
method was used as the Poisson solver. The time complexity of the first
stage is dependent on the number of data points n, whereas the second is
dependent on the discretisation size m.

The stopping criterion for the cg method was based on the Hestenes–
Stiefel rule as described in [1, 11]. Note that if the preconditioner is not used,
then the value for delay length de has to be greatly increased, as expected
since the delay length depends on the condition number.

In this section we describe in more detail how the system of equations is
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built, focusing on A and d. The row j column k entry of the A matrix is

ajk =
1

n

n∑
i=1

bj(x
(i))bk(x

(i)) ,

where {bj} are the standard finite element linear basis functions (hat func-
tions). Since bj has local support

ajk =
{ 1

n

∑
x(i)

bj(x
(i))bk(x

(i)) : x(i) ∈ support(bj) ∩ support(bk)
}

. (9)

To evaluate Equation (9) the algorithm must determine which tetrahe-
dron in the finite element grid contain which data points. To reduce the
search time the domain is divided into equally spaced cubes and a record is
kept of which data points sit in which cube. Given a particular tetrahedron,
the coordinates of the vertices are used to find the nearby cubes. The final
step is to loop through the data points in the nearby cubes and find those
sitting within the tetrahedron.

Since the value assigned to ajk is a cumulative sum it is possible to evalu-
ate it in parallel or using out-of-core techniques (as long as the finite element
grid remains in core).

A similar technique is used to find d.

5 Example 3D applications

We now present three examples of data fitting in 3D. The first example was
constructed by randomly generating a million points on a sphere with centre
(0.5, 0.5, 0.5) and radius = 1/3 . In the second example, all of the points
on the sphere with x < 0.5 were removed. The third example uses the mri
image of a skull that is available in Matlab, see Figure 1.
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Figure 1: mri Image of a skull available in Matlab.

The tolerance used for the stopping criterion was 10−3. A fairly high
tolerance was chosen for these examples since we were only interested in the
visual output.

Figure 2 gives the Iso-surface plot of the results obtained using a grid with
68705 nodes. The data set contained 106 points. The smoothing parameter α
was set to 10−3. The delay length de = 5 , and the cg method took 7 itera-
tions to converge (including the calculations for the error approximation).

Figure 3 shows a slice of the semi-sphere cut along the y = 0.5 axis.
Comparing left and right plots in Figure 3 we see that the interpolation is
no longer symmetric, as expected. The data set contained approximately
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Figure 2: Iso-surface plot of the sphere modelled on a grid with 68705 nodes.
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Figure 3: Slice of the semi-sphere along the y = 0.5 axis. The finite element
grid had 68705 nodes. The left plot shows the semi-sphere, the right plot
shows the corresponding plot of the whole sphere.

1/2 × 106 data points. The cg method took 5 steps to converge. The
smoothing parameter α was set to 10−3.

The final example given in Figure 4 shows the thin plate spline fit to
the mri data given in Figure 1. The smoothing parameter α was reduced
to 10−7 to better capture the contours of the face and the stopping criterion
was 10−2. The delay length de = 20 , and the method took 117 iterations
to converge.

A set of Poisson equations must to be solved when multiplying a vector
by the Z matrix. This was done by applying the multigrid method until the
maximum residual norm was within 10−15. We believed that it was neces-
sary to solve these systems accurately to ensure that the correct matrix is
used in the cg iterations. A further set of Poisson equations must be solved
when applying the preconditioner. Initially only a small number of multi-



5 Example 3D applications C657

Figure 4: Thin plate spline approximation to skull when the finite element
grid contained 68705 nodes.

grid iterations was used, but we observed that the preconditioned matrix
was illconditioned and consequently the overall number of cg iterations in-
creased. Therefore the number of multigrid iterations was increased so that
the maximum residual norm was less than 10−10. Note that the results from
the previous conjugate gradient iteration are used as initial guesses for the
Poisson solver.
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6 Future research

The work described here is in its early stages. Other options that we wish
to explore include; the use of higher-order finite element basis functions,
adaptive grid refinement, different solution techniques, automatic calculation
of α and different boundary conditions.
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