
ANZIAM J. 45 (E) ppC693–C712, 2004 C693

Detecting contour crossings in contour
dynamical and contour-advective

semi-Lagrangian simulations

T. M. Schaerf∗ C. Macaskill†

(Received 9 August 2003; revised 23 January 2004)

Abstract

Contour dynamics and contour-advective methods are commonly
used numerical techniques for simulating inviscid fluid motions. In
these methods the vorticity or potential vorticity of a flow is repre-
sented by a series of contours which are advected according to the
prevailing velocity field. In some circumstances the contours may
cross, eroding the accuracy of the numerical solution and violating
the equations of motion. This paper describes an automated method
for explicitly revealing such crossings, first considering the case of de-
termining if two contours cross and then later the more general case
of determining if and where an arbitrary number of contours cross.

∗School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006,
Australia. mailto:tschaerf@maths.usyd.edu.au

†School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006,
Australia.

See http://anziamj.austms.org.au/V45/CTAC2003/Scha/home.html for this arti-
cle, c© Austral. Mathematical Soc. 2004. Published July 29, 2004. ISSN 1446-8735

mailto:tschaerf@maths.usyd.edu.au
http://anziamj.austms.org.au/V45/CTAC2003/Scha/home.html

ANZIAM J. 45 (E) ppC693–C712, 2004 C694

Contents

1 Introduction C694

2 The Two Contour Problem C698

3 The N-Contour Problem C700

4 Concluding Remarks C706

References C708

A Details C710
A.1 Splitting of contours into single valued segments C710
A.2 Determining if the ranges of x and y values of two segments

intersect . C710
A.3 Range of intersection of two segments in the x direction . . C711
A.4 Obtaining the y coordinates of the segments at the same grid

points . C711

B Operations count for components of the N contour algo-
rithm utilising digital representation of contours and im-
proved storage efficiency C711

1 Introduction

Contour dynamics is a commonly used numerical method for simulating in-
viscid fluid motions, particularly vortex motion. This method is based on
the earlier “water-bag” model for solving the Vlasov equation that appears in
plasma physics [1] and was originally introduced in the context of simulating
two dimensional fluid motions governed by the barotropic vorticity equation
in a domain of infinite extent [12]. It has since been modified to deal with

1 Introduction C695

vortical motions on the surface of a sphere or cylinder as well as multilayer
quasigeostrophic flows [5, 6], amongst others. One of the most appealing
features of contour dynamics is its ability to resolve fine-scale features, such
as steep gradients in the vorticity or potential vorticity (pv) of a flow.

In contour dynamics the potential vorticity field of the flow is represented
by a series of contours. Associated with each contour is a jump in the pv
and between the contours the pv is uniform. The contours are discretely
represented by nodes, usually most densely placed in regions of high local
curvature, and by some interpolating function between the nodes. Both node
distribution and the type of interpolating function used vary [3, 4, 5, 10, 12].
The nodes on the contours are advected at each time step according to the
prevailing velocity field of a flow, which is calculated by evaluating contour
integrals. For n nodes the computational cost of calculating the advecting
velocities is O(n2). As a flow evolves, and often becomes increasingly com-
plex, it is necessary to insert and redistribute nodes to adequately resolve
the flow.

There are two major drawbacks to the method of contour dynamics. The
first is the potentially rapid growth in the number of nodes used to represent
the contours, usually associated with the formation of long filamentary struc-
tures in the pv field that are believed to contribute very little to overall flow
dynamics. The second is the O(n2) dependence of the velocity calculation
required every time step. This, coupled with the rapid growth in nodes, can
cause calculations to grind to a virtual standstill.

Contour surgery [4, 5] was introduced to treat the development of fine-
scale structures, and thus help reduce the growth in the number of nodes,
in a consistent manner. It effectively removes features in the pv field that
form below a predefined surgical scale, δ, which is chosen consistently with
the method of node distribution described in [4] and [5].

The Contour-Advective Semi-Lagrangian (casl) algorithm [7] seeks to
retain the advantageous features of contour dynamics and contour surgery,

1 Introduction C696

whilst removing the O(n2) dependence of the velocity calculation. It was de-
veloped after the success of the diagnostic tool known as contour advection
with surgery [11]. As with contour dynamics the pv field is represented by
a series of contours, however the velocity field of a flow is not calculated by
evaluation of contour integrals. Rather, for each time step required for tem-
poral integration, the information about the pv field is transferred from the
contours to a fine grid. The pv values at each grid point are then averaged,
perhaps several times, onto a coarser grid where the velocity is calculated us-
ing some grid based method such as a finite difference scheme or fast Fourier
transforms. The gridded velocities are then interpolated back to the nodes,
which are advected according to a 4th order Runge-Kutta time integration
scheme. The essential technical issue needed for such a method to work ef-
ficiently has been resolved in [7] which is an O(n) scheme for transferring
from the Lagrangian contoured representation of the pv field to the Eulerian
gridded representation of the same, and then the transfer of the velocities
from the grid points back to the nodal points on the contours.

The casl method is rapidly gaining popularity as an efficient method for
simulation of various fluid flows with recent advances such as the development
of the casl algorithm for cylindrical geometry [9]. However, an error that
was originally present in contour dynamics has persisted. In some cases
contours may cross, see Figure 1, most often after contours that represent the
boundaries of different levels of potential vorticity have become very close to
each other. Methods for trying to prevent such crossings from occurring are
given in [4, 5, 10] and an explicit example of contour crossing in a contour
dynamical simulation is given in [3]. The problem seems to be a result
of inadequate spatial resolution of the contours, particularly at points of
close approach with other contours. In some cases the effects of contour
crossings may be considered benign, but in other cases, such as in simulations
of vortical motion on the β-plane this is almost certainly not the case.

The problem addressed by this paper is as follows. Given N closed con-
tours, from a time step of a contour dynamics or casl simulation, each

1 Introduction C697

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time: 2.6

x

y

0.37 0.405 0.44
0.81

0.845

0.88
Time: 2.6

x

y

Figure 1: The leftmost diagram illustrates a time step from a two dimen-
sional turbulence simulation in a cylinder. The rightmost diagram illustrates
some contour crossings detected at the top right of the leftmost diagram us-
ing the method described in the text. Black dots indicate the grid points
where the velocity is determined. Black circles represent nodes to the left of
a crossing, red circles represent nodes to the right.

1 Introduction C698

discretely represented by nj nodes, j = 1, . . . , N , whose positions are given
in Cartesian (x, y) coordinates, and assuming linear interpolation between
the nodes, to explicitly determine the location of all contour crossings, if any
exist. The purpose of addressing this problem is to attempt to determine
the cause of such crossings and ultimately develop a method to prevent or
at least reduce the number of them.

Section 2 describes a method for finding any crossings that occur between
two contours. In Section 3 the general case of finding all crossings that
occur between N contours is considered. The methods described in Section 3
involve using a rough test to determine which pairs of contours are close
enough that they may potentially cross, and then utilising the method of
Section 2 on pairs of contours considered close enough to explicitly report
any crossings. Section 4 contains brief comments on possible improvements
and extensions of the algorithms described in Section 3.

2 The Two Contour Problem

The method for determining if two contours cross utilises the following idea.
Consider two functions, f(x) and g(x). If the sign of f(x) − g(x) changes
at any point, then f(x) and g(x) must cross. When dealing with numerical
data, the values of f(x) and g(x) must be known for the same values of x to
determine if two functions cross. The difficulty in using this idea to determine
if two contours cross arises from two things. Firstly, in general the contours
that are being tested for crossings are not functions, but rather closed curves.
Secondly, there is no regularity in the positioning of nodes in the x or y
directions, so the y coordinates of each contour are not in general known for
the same set of x coordinates.

The first step in determining if two contours cross is to split the jth con-
tour, into sj parts that are single valued functions (‘segments’) of x, for
j = 1, 2 . This is achieved by looking for sign changes in the differences of

2 The Two Contour Problem C699

the x coordinates of consecutive nodes on each contour.

Only those pairs of single valued segments for which both the ranges of
x and y coordinates overlap have the potential to cross, see Figure 2(c). To
determine if there is any such overlap in the ranges of x and y coordinates
of a given pair of segments, their extreme x and y values are compared in
turn. Segments that are suitably well separated cannot cross, as in Fig-
ure 2(a) and (b). An s1 × s2 matrix M with elements mkl, k = 1, . . . , s1 ,
l = 1, . . . , s2 , is used to record if segments may cross based on the extreme
value comparison. For a given pair of segments, k′ and l′, mk′l′ is set to one
if the ranges of x and y values of k′ and l′ intersect, or zero otherwise.

The range of intersection in the x direction is calculated for those pairs of
segments, k′ and l′, with mk′l′ = 1 . It is then necessary to obtain the y values
of each pair of segments for the same x values, using linear interpolation at
a number of grid points chosen within the range of intersection of the two
segments. The range of intersection of two segments, xleft ≤ x ≤ xright, and
a choice of x coordinates at which to obtain the y coordinates are illustrated
in Figure 2(d).

When the y coordinates of a pair of segments, k′ and l′, are known for
the same set of x values, it is then possible to perform the simple analy-
sis described at the beginning of this section, that is, observing the sign
of f(x) − g(x) , to determine if the two segments cross. For example, let
Yk′ and Yl′ be the y values of segments k′ and l′ that have been obtained for
the same set of x coordinates using linear interpolation. If the sign of Yk′−Yl′

changes from negative to positive, or vice versa, then the two segments cross.
If the segments cross it is then possible to determine which nodes lie to either
side of a crossing by examining the indices where there are sign changes in
Yk′−Yl′ , and therefore explicitly determine the point(s) of intersection of the
two segments and hence the two contours to which they belong, if desired.
Technical details of the procedures for splitting contours into single valued
segments, determining if the ranges of x and y values of two segments inter-
sect, determining the range of intersection of two segments in the x direction

2 The Two Contour Problem C700

and choosing the set of x coordinates at which the y values of two segments
should be calculated are given in Appendix A.

3 The N-Contour Problem

This section describes how the method for determining if, and where, two
contours cross may be extended to search for all crossings amongst an arbi-
trary number of contours. It would be inefficient to immediately compare all
pairs of contours in a search for crossings using the technique of Section 2.
Two methods for determining the relative closeness of contours, and thereby
reducing the number of pairs of contours that should be checked using the
two contour method, are described in this section.

The first method is derived directly from part of the fusion surgery sub-
routine of the casl algorithm [7]. The extreme x and y coordinates for
each contour j, j = 1, . . . , N , are determined. From these, the contour half-
widths, w = (xmax − xmin)/2 , half-heights, h = (ymax − ymin)/2 and centres
(X, Y) =

(
(xmin + xmax)/2, (ymin + ymax)/2

)
are calculated. Two contours,

j′ and j′′, are then to be tested for crossings using the method of Section 2
if both

|X ′ −X ′′| ≤ w′ + w′′ and |Y ′ − Y ′′| ≤ h′ + h′′ (1)

are satisfied, where dashes are used to denote the quantities associated with
contour j′, and double dashes are used to denote those associated with con-
tour j′′.

The second method for roughly determining if two contours are close
enough that they may potentially cross involves constructing a digital picture
of each of the contours on an ng × ng grid. The choice of ng is arbitrary;
however, from experience, using a value for ng between about 200 and 300
works well, and allows a fairly accurate depiction of each contour without
consuming excessive computational resources. The information regarding

3 The N -Contour Problem C701

·

·

a b

c d

��
��

�� ��
�� �� ��

��

��

�� �� �� ��
��

��
��

��
��

��
��

��
��

�� ���� ��
��

��
��

�� �� ��

�

�

xleft xright

x

y

x

y

x

y

x

y

Figure 2: Two segments cannot cross if they are suitably separated in the
(a) y or (b) x directions, or both. For two segments to cross the ranges of
their x and y coordinates must overlap as in (c). In (d) closed black circles
denote the nodes that make up each of the segments. Open red circles are
used to denote the points at which the y coordinates of each segment are
determined in order to find if the two segments cross.

3 The N -Contour Problem C702

the digital representation of each contour is stored in the three dimensional
array T , with elements trcj, for r = 1, . . . , ng , c = 1, . . . , ng , j = 1, . . . , N .
Layer j of T contains the digital drawing of contour j. Initially, T is set to
be the ng ×ng ×N zero array. The production of the digital versions of each
of the contours is done as follows. The x and y coordinates of the nodes,
(xi, yi), are scaled and shifted so that they lie between 1 and ng. For example
if the coordinates of all the nodes from all the contours are confined to the
domain −π ≤ x ≤ π , −π ≤ y ≤ π then an appropriate scaling and shifting
would be

x̂i =
(xi + π)(ng − 1)

2π
+ 1 , ŷi =

(yi + π)(ng − 1)

2π
+ 1 ,

where (x̂i, ŷi) are the coordinates of node i when shifted and scaled to the
domain 1 ≤ x ≤ ng , 1 ≤ y ≤ ng . The nearest integers to both x̂i and ŷi

are calculated and stored as x̄i and ȳi respectively. For contour j, tȳix̄ij is set
to 1.

To construct an accurate representation of each contour, consecutive
nodes in their scaled, integer form need to be joined by the equivalent of
straight line segments. That is for contour j, the entries of T lying on the
equivalent straight line segment between tȳix̄ij and tȳ(i+1)x̄(i+1)j are set to 1.
The Bresenham line algorithm [2, 8] is used to determine efficiently which are
the appropriate array entries to fill, if any. Bresenham’s algorithm was origi-
nally developed for computer control of digital plotters and is now commonly
used to draw lines on computer displays. Figure 3 illustrates the process of
constructing the digital representation of a curve.

Pairs of layers of T are added together in turn, and the resulting matrices
are searched for entries with value greater than 1. This process requires
(N2−N)/2 matrix additions and search operations. Two contours, j′ and j′′,
are to be further scrutinised for potential crossings if the matrix obtained by
adding layers j′ and j′′ of T contains any entries with value 2.

In practice, the method of producing digital representations of each con-
tour picks out many fewer pairs of contours for further testing using the

3 The N -Contour Problem C703

·

·

�

�

�

�

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 0 0 1

1 0 0 0 0 1

0 0 0 0 0 0

a b c

Figure 3: Part of a contour is depicted in (a). Black dots are used to
represent the positions of nodes. The coordinates of the nodes are scaled and
shifted so that they lie between 1 and ng in both the x and y directions. The
nearest integers to these values are taken, and the corresponding entries in T
are set to 1, as in (b). Appropriate intermediate entries are set to 1 with the
aid of the Bresenham line algorithm in (c). To aid with visual representation,
the rows of the matrices in (b) and (c) are drawn in ascending order from
the bottom of the panels to the top.

3 The N -Contour Problem C704

method of Section 2 than the method derived from fusion surgery. As an ex-
ample, the two methods have been applied to a data set containing 201 time
steps from the simulation of two dimensional turbulence in a cylindrical do-
main using the casl algorithm (the same data set from which the images
in Figure 1 were obtained). Figure 4 shows the number of pairs of contours
selected for further scrutiny by each method. The reason that fewer pairs
are picked out by the method of producing digital representations is related
to the fact that this method includes information about the general shape
of the contours, whereas the method derived from fusion surgery does not.
Due to its finite resolution the digital representation method may miss some
pairs of contours that could cross. This rarely happens and in cases that
it does any crossings missed from one time step are usually detected in the
next. By contrast, application of equations (1) guarantees identification of
all potentially crossing contour pairs.

Although the method of producing digital representations of each contour
is better than application of equations (1) at reducing the number of pairs of
contours that undergo the final tests for crossings, as it has been described
above it is not efficient in terms of storage. It is necessary to reduce the
space taken up by the digital representations of the contours to make many
calculations tractable. The storage efficiency of the digital representation
method may be vastly improved in the following way. An ng × ng matrix,

T̃ , with elements t̃rc, is used to temporarily store the digital representation
of each contour. Prior to the construction of the representation of each
contour, T̃ is set to be the ng × ng zero matrix. The columns and rows

of all the entries of T̃ that are set to 1 during the process of constructing
a digital representation of a contour are recorded in the vectors x and y
respectively. Another vector, b, is used to record the indices of the entries
in x and y that correspond to the first point on each contour. Once the
digital representation of a contour is complete, T̃ is added to S, an ng × ng

matrix which is initially set to be a zero matrix and is to hold the sum of
all the digital representations of the contours. T̃ is then set to O before the
construction of the next contour representation. After all the contours have

3 The N -Contour Problem C705

0 2 4 6 8 10
0

100

200

300

400

500

600

t

N

0 2 4 6 8 10
0

500

1000

1500

2000

t

Figure 4: The leftmost plot shows the number of contours, N , for a series
of time steps from a casl simulation. The number of contours varies due
to the application of contour surgery. The right hand diagram illustrates
the number of pairs of contours that are to be further tested for crossings
after application of equations (1) (blue circles), or the method of producing
digital pictures (red crosses). The number of pairs in the right hand panel
have been selected from as many as 179101 contour pairs corresponding to
the peak value of 599 contours.

3 The N -Contour Problem C706

been treated in this way, S is searched for entries with value greater than 1. If
any such entries are found, x, y and b are used to determine which contours
have part of their digital representation at these grid points. All pairs of
contours that are found to share grid points in their digital form are then
tested for crossings using the method of Section 2. A brief summary of the
steps used to find any contour crossings that occur between N contours is
given in Table 1. Appendix B contains estimates for the computational cost of
detecting contour crossings with the aid of producing digital representations
of the contours and improved storage efficiency.

When implemented in matlab the version of the algorithm that uses
equations (1) to select pairs of contours took 119 000 seconds of cpu time
on a 2200MHz Pentium Xeon processor to find all contour crossings in the
two dimensional turbulence data set. The version of the algorithm that
utilises digital representations of the contours took 62 000 seconds of cpu
time to analyse the same data set. The results obtained by both methods
were in good agreement. The bulk of the calculation time for both cases was
spent in the part of the algorithm that compares extreme values of single
valued segments and then explicitly searches for crossings where appropriate.
Over 94% of the cpu time for the first calculation, and over 88% of the
second was spent in this part of the calculation. In contrast, a maximum
of 3.34 seconds of cpu time per time step of data analysed was consumed
picking contour pairs by application of equations (1) and a maximum of
2.37 seconds was used by the digital representation of contours method.

4 Concluding Remarks

The efficiency of the algorithm described in Section 3 may be improved by
reordering some of the steps outlined in Table 1. After reading the data the
contours could be split into single valued segments, and digital representa-
tions of the segments rather than the entire contours should be produced.

4 Concluding Remarks C707

Table 1: Summary of Procedures for N Contour Algorithm

1. Input number of grid points, ng, and number of time steps to
be analysed.

2. For each time step

(a) read data

(b) construct digital representations of contours

(c) determine pairs of contours to be tested using two contour
procedure

(d) If there are any pairs of contours requiring further testing

i. Split contours into single valued segments (see ap-
pendix A)

ii. For pairs of contours identified as being close to each
other, compare extreme x and y values of single valued
segments

iii. Calculate range of intersection in x direction of seg-
ments that may cross. Use linear interpolation to ob-
tain the y coordinates of each segment for the same
set of x coordinates

iv. Perform subtraction and look for sign changes to iden-
tify contour crossings

4 Concluding Remarks C708

This would eliminate the process of comparing extreme values of segments
(for a given pair of contours the cost is 2sj′

i
sj′′

i
, see Appendix B) and imme-

diately identify which segments need to be explicitly checked for crossings.

The methods described in Sections 2 and 3 may be easily extended to
include a search for self-intersection of a contour. They are also capable of
dealing with contours which are closed in the periodic sense, such as those
used to represent the regular part of the potential vorticity field in β-plane
flows.

Acknowledgements: We thank Les Farnell for his helpful suggestions re-
garding the construction of digital pictures of the contours with the aid of
the Bresenham line algorithm [2].

References

[1] H. L. Berk and K. V. Roberts. The water-bag model. Methods
Comput. Phys., 9:87–134, 1967. C694

[2] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25–30, 1965. C702, C708

[3] E. Chacón Vera and T. Chacón Rebollo. On cubic spline
approximations for the vortex patch problem. App. Num. Math.,
36:359–387, 2001. C695, C696

[4] D. G. Dritschel. Contour surgery: A topological reconnection scheme
for extended integrations using contour dynamics. J. Comp. Phys.,
77:240–266, 1988. C695, C696

[5] D. G. Dritschel. Contour dynamics and contour surgery: Numerical
algorithms for extended, high-resolution modelling of vortex dynamics

References C709

in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep.
10:77–146, 1989. C695, C696

[6] D. G. Dritschel and R. Saravanan. Three-dimensional
quasi-geostrophic contour dynamics, with an application to
stratospheric vortex dynamics. Q. J. R. Meteorol. Soc. 120:1267–1297,
1994. C695

[7] D. G. Dritschel and M. H. P. Ambaum. A contour-advective
semi-Lagrangian numerical algorithm for simulating fine-scale
conservative dynamical fields. Q. J. R. Meteorol. Soc. 123:1097–1130,
1997. C695, C696, C700

[8] K. Hoff. Derivation of Bresenham’s line algorithm. 1995. [Online]
http://www.cs.unc.edu/~hoff/projects/comp235/bresline/

bresen.html C702

[9] C. Macaskill, W. E. P. Padden and D. G. Dritschel. The CASL
algorithm for quasi-geostrophic flow in a cylinder. J. Comp. Phys.
188:232–251, 2003. C696

[10] P. W. C. Vosbeek and R. M. M. Mattheij. Contour dynamics with
symplectic time integration. J. Comp. Phys. 133:222–234, 1997. C695,
C696

[11] D. W. Waugh and R. A. Plumb. Contour advection with surgery: A
technique for investigating finescale structure in tracer transport.
J. Atmos. Sci. 51(4):530–540, 1994. C696

[12] N. J. Zabusky, M. H. Hughes and K. V. Roberts. Contour dynamics
for the Euler equations in two dimensions. J. Comp. Phys. 30:96–106,
1979. C694, C695

http://www.cs.unc.edu/~hoff/projects/comp235/bresline/bresen.html
http://www.cs.unc.edu/~hoff/projects/comp235/bresline/bresen.html

References C710

A Details

A.1 Splitting of contours into single valued segments

Let xi denote the x coordinate of node i. The splitting of each contour, j, into
sj segments is achieved by looking at the sign of xi+1−xi for i = 1, . . . , nj on
each contour, where nj is the number of nodes used to discretely represent
contour j, and xnj+1 = x1 , since all contours are closed. A particular node, i′,
is identified as the last node of one segment and the first node of the next if
the sign of xi′+1 − xi′ is different to that of xi′ − xi′−1 .

A.2 Determining if the ranges of x and y values of
two segments intersect

The extreme y values of the single valued segments are considered first.
For a given pair of segments from different contours, k′ and l′ with k′ ∈
{1, 2, . . . , s1} and l′ ∈ {1, 2, . . . , s2} , if the minimum y value of either seg-
ment exceeds the maximum y value of the other segment, then the two seg-
ments cannot possibly cross, mk′l′ is set to zero, and the extreme y values
of the next pair of segments should be examined. Otherwise the ranges of
y values of the two segments intersect and their extreme x values should be
examined. Similar to the test of extreme y values, if the minimum x value
of either segment exceeds the maximum x value of the other segment, then
the two segments cannot cross, mk′l′ is set to zero, and the extreme y values
of the next pair of segments should be considered. Passing both the tests of
extreme x and y values, the ranges of x and y values of segments k′ and l′

intersect, it is possible that the two segments may cross, and mk′l′ is set
to one.

A Details C711

A.3 Range of intersection of two segments in the
x direction

The range of intersection in the x direction is calculated for those pairs of
segments, k′ and l′, with mk′l′ = 1 . Let xk′ min and xk′ max be the extreme
x values of segment k′, and let xl′ min and xl′ max be the corresponding values
of segment l′. Then the range of intersection of the two segments in the
x direction is xleft ≤ x ≤ xright , where xleft = max(xk′ min, xl′ min) and xright =
min(xk′ max, xl′ max) .

A.4 Obtaining the y coordinates of the segments at
the same grid points

Conceptually the easiest way to do this is to calculate the y values of the two
segments for a set of equally spaced x coordinates in the range xleft ≤ x ≤
xright using linear interpolation. It is more efficient to obtain the y values
of two segments at the ordered set of x coordinates Xk′ ∪ Xl′ using linear
interpolation, where Xk′ is the set of x coordinates of nodes belonging to
segment k′ that lie in the range xleft ≤ x ≤ xright and Xl′ is the corresponding
set of nodes belonging to segment l′.

B Operations count for components of the

N contour algorithm utilising digital

representation of contours and improved

storage efficiency

Production of the matrix S requires approximately 22n+5η+N calculations,
where n is the total number of of nodes used to discretely represent the

B Operations count for components of the N contour algorithm utilising digital representation of contours and improved storage efficiencyC712

contours, η is the number of intermediate points filled with the aid of the
Bresenham line algorithm and N is the total number of contours.

The cost of determining which pairs of contours need to be further tested
for crossings after the production of the matrix S is roughly n2

g + A(n + η +

2N) +
∑A

i=1 (Bi(N + 3/2) + B2
i /2) , where ng is the number of grid points

used in both the x and y directions to represent the contours digitally, A is
the number of elements of S with value greater than 1 and Bi is the number
of contours that pass through the ith entry of the matrix S that has value
greater than 1 (i = 1, . . . , A).

Splitting all the contours into single valued segments uses 4n + 3s + 3N
operations, where s is the total number of single valued segments produced.
The jth contour is split into sj segments, so s =

∑N
j=1 sj .

The cost of comparing the extreme values of the single valued segments
of the ith pair of contours, j′i and j′′i , is 2sj′

i
sj′′

i
(one set of comparisons for

both the x and y directions). If there are D pairs of contours picked out for
further scrutiny by examination of their digital representations, then at most
2
∑D

i=1 sj′
i
sj′′

i
calculations are required, since those pairs of segments that fail

the extreme y value test do not require examination of their x coordinates.

The cost of explicitly checking if two segments cross by determining the
y coordinates of the two segments at the same set of x coordinates and then
examining the sign of the difference of the two curves is at worst n2

s̄ + n2
ŝ +

n2
interp + 2ns̄ + 2nŝ + 11ninterp in addition to a few calculations to identify

the nodes on either side of any crossings detected. ns̄ is the number of
nodes on one segment and nŝ is the number of nodes on the other. ninterp is
used to denote the number of interpolation points used. Several parts of the
calculation require x coordinates to be sorted in ascending order, the cost of
such an operation being dependent on the square of the number of nodes in
the worst case.

	Introduction
	The Two Contour Problem
	The N-Contour Problem
	Concluding Remarks
	References
	Details
	Splitting of contours into single valued segments
	Determining if the ranges of x and y values of two segments intersect
	Range of intersection of two segments in the x direction
	Obtaining the y coordinates of the segments at the same grid points

	Operations count for components of the N contour algorithm utilising digital representation of contours and improved storage efficiency

