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A finite difference Poisson solver for irregular
geometries
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Abstract

The motivation for this work comes from the development of a 3D
quasi-geostrophic Contour Advective Semi-Lagrangian model for vor-
tex interaction in the ocean. The existing code is limited to circular
cylindrical geometry and uses polar coordinates. We wish to extend
the method to more general cross-sections. The crucial aspect is the
solution of the Poisson equation that allows the determination of the
stream function from the potential vorticity at each time-step, as this
is the part of the algorithm that must be performed on a grid: the
advection of potential vorticity contours is fully Lagrangian and hence
is easily modified for irregular domains. We develop a 2D algorithm
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for inverting the Poisson equation for the stream function on an ar-
bitrarily shaped domain, in the special case when the boundary is a
streamline, as is the case for our problem. However, the method is also
valid for non-zero Dirichlet boundary conditions. The approach uses
finite differences with the domain embedded in a rectangular Carte-
sian grid. We show that the algorithm is second-order accurate and
provide several numerical examples.
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1 Introduction

The Poisson equation is one of the fundamental equations in mathematical
physics. It occurs in a broad range of applications including acoustics, elec-
tromagnetism and fluid mechanics: our specific application is the solution of
the Poisson equation that recovers the stream function from the vorticity in
inviscid vortex dynamics. Our aim is to solve the Poisson equation on an
irregularly shaped, but smooth, domain as a critical part of ongoing work on
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vortex dynamics, extending previous work in a circular domain [5]. As the
boundary of this domain is a streamline, we limit our approach to Dirichlet
boundary conditions.

There are many different approaches to this problem in the literature. The
immersed boundary method [12] uses a d-function on the domain boundary
to enforce a no flow boundary condition; see [11] for details. A related
approach called the immersed interface method is a second-order numerical
method designed to preserve the jump condition at the interface [3]. An
alternative approach, using boundary integral techniques, has been explored
in a sequence of papers [7, 8, 9, 10].

Liu, Fedkiw and Kang [4] develop a first-order accurate symmetric dis-
cretization of the variable-coefficient Poisson equation in the presence of an
irregular interface across which the variable coefficient, the solution and the
derivative of the solution may have jumps. These ideas were extended by
Gibou et al. [1] to give a second-order accurate symmetric discretization for
the Poisson equation with Dirichlet boundary conditions.

Here we follow Johansen and Colella [2]. In their approach, the physical
domain is embedded in a rectangular domain, where it is assumed that the
unknown takes zero values outside the physical boundary—therefore there is
in general a jump at the boundary. Johansen and Colella solved the Pois-
son equation with Dirichlet boundary conditions, as we do here. However,
their treatment of the boundary in the 2D problem uses a local area fit to
determine the boundary treatment, which is also second-order accurate, but
gives rise to larger errors at moderate grid-point density than the current
method. Furthermore, the current technique uses the simpler idea of apply-
ing the 1D boundary treatment over x and y separately. In principle, we can
therefore directly extend the current approach to 3D, but we have not yet
attempted this.

In this paper we present a numerical method for solving the Poisson
equation with Dirichlet boundary conditions on a bounded 2D region 2.
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Our approach uses a finite difference discretization. The Poisson equation is
discretized at each grid-point. For grid-points away from the boundary the
algorithm uses the standard five-point discretization for second derivatives
with second-order truncation error. The slopes at the edge points are com-
puted to second-order accuracy (that is, using a quadratic fit), so that the
second derivatives at grid-points just inside the boundary are in fact only
first-order accurate. On the boundary, this first-order truncation error pro-
duces a third-order accurate solution; however the overall solution (that is,
at interior points) is second-order accurate. This at first sight seems incon-
sistent, in that it might be adequate to use linear fitting at the boundaries
to ensure uniform error across the domain, but such a procedure leads to
a coefficient of error at the boundary that is large enough to dominate the
calculation. The discretization used here gives rise to a pentadiagonal matrix
system, as for a rectangular domain, but matrix elements corresponding to
boundary points depend on the local form of the boundary.

For the remainder of this paper, we will give details of the algorithm. In
Section 2, we describe the discretization in 1D and provide some analysis
of the accuracy of the method. We explain that the extension to 2D is
straightforward. Finally, we show some of the numerical results in Section 3.

2 Mathematical Formulation

Our aim is to solve the Poisson equation

V2¢ - f(x,y) ) (1)

on a domain € with Dirichlet boundary conditions ¢ = g(z,y) given on the
boundary 0f).
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2.1 1D case

To solve the 2D problem we make use of the following 1D analysis, employed
first in the 2z-direction and then in the y-direction. Furthermore, in the 1D
case we can explicitly derive the error involved, so as to understand how
boundary error contributes to the overall error.

The 1D Poisson equation is just

d?

= I). )
and we choose a uniform grid over the domain x € [e,d]. However, we
take the domain of interest 2 to be the interval & € [TjumpL; Tjumpr], With
specified Dirichlet conditions at these (typically non-grid) points. Outside
the interval we set ¥ = 0, so that in general there is a discontinuity at
each of Tjumpr, and Zjumpr: With zero boundary conditions this will reduce
to a jump in slope. Then we label the points between the jumps so that
€ =20 < TjuympL < T3 < T2 < -+ < In-—2 < TN-1 < ZjumpR < dzﬁN, the
distance between xy and Tjumpr, is oAz and the distance between Zjumpr
and zy is apAx (Figure 1).

We denote by x;41/ the midpoint of the interval [z;, z;41] . For all the
points in Q\ [z, z1] U [xy_1, zxn], we use centered differences to approximate
the gradient at the midpoint:

Y1 — Yy
Ypprjp = P ®)
To approximate di/dx at x = x1/5 (in the left-most interval), we fit a

quadratic polynomial through the values ¥jumpr, ¥1 and 12, and evaluate
the corresponding slope at © = x5 (Figure 1).

1 2 1+ag Qar,

¢1/2 = A_ZC _<1 _ aL)(Q_aL)wjumpL‘F 1 —Ode)l - Q—QLQ/JQ . (4)
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F1cURE 1: Diagram of the second-order stencil for the gradient at each end
of the interval. A quadratic is fitted to the values of ¢ at the two neighbouring
points and boundary point.
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Similarly, to approximate di)/dx at = xy_1/2, we fit a quadratic poly-
nomial through the values ¥jumpr, ¥n—1 and ¥n_o, and evaluate the corre-
sponding slope at & = xn_1/5 (Figure 1).

The discretization of equation (2) gives rise to a tridiagonal matrix equa-
tion for the unknown 1 on the interior grid-points; for the exterior grid-points
we set ¢ = 0. At each grid-point = = zy, (2) is discretized by the 1D stan-
dard second derivative

s(ts2)- () e

However at © = x;, equation (2) becomes

1

(Ax)? [<1 oy : :

2 aL>wjumpL — P+ ¢2] =fi. (6)

1—OéL 2—OJL

A similar discretization applies at © = xy_1 .

2.1.1 Error estimate for the 1D case

This analysis follows the ideas of Johansen and Colella [2], but carries through
the evaluation of the error terms explicitly so that it becomes clear how the
boundary truncation error contributes to the overall error in the solution.

We define the second derivative operator

H; — H,;
(L§)¢+1 _ +3/2A$ +1/2 = Tt (7)

where H is the first derivative of €. The truncation error

Ty = fi - (Lwe)m
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where 9° is the exact solution. The error & = 1) — ¢ satisfies the following
system of equations:

LE=71, &=~& =0. (8)
Solving (8) for &, we obtain

&1 = (1—oay)(Az)® N

Ho (2 N-1
N-1/2 OéL - ZTk] . (9)

Similarly for &y_1; but for 2 < k<N —2

& = (Az)? [(k - aL)HE/ 2

— N-1 k—1 N-1
_(1_QL) ( L T1+Z7'm> — Tp:| .
=m+1

—
HN_l/QzAZL' 1—O[L [ L71+ZTj

1—|—O{ N-2 N o N-3 N-1
I—QZZ Tk+ : Z ZTk} (11)

j=1k=j+1 j=1k=j+1

1+OzR
1—ag — QR

X [1+(N—1—aL)(

Here Hy_1/9 is O((Ax)?), so that the total error at the end-points &§; and {y_4
is O((Az)?). However, for 2 < k < N —2 the error at internal grid-points, &,
is O((Az)?). This internal error in fact dominates and gives rise to overall
error of order O((Az)?) due to the small coefficients for & and &y_.
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2.2 2D case

Consider the 2D Poisson equation (1), and let 2 be any irregular 2D shape
inscribed within a rectangle with boundary 02 at which Dirichlet conditions
U(x,y) = g(z,y) are specified. As ¢p = 0 outside the physical domain,
there may be jumps on 0. We denote by z;;1/2; the midpoint of the
interval [x; j, #;41,;] (that is, in the 2-direction ) and by ¥; j+1/2 the midpoint of
[¥i j, Yij+1]. The generalization of the 2D method is straightforward from the
1D case and it is simple to implement since it allows a dimension by dimension
application of the numerical method. For all the interior points where there
are no jumps in z, we use centered differences to approximate dv)/0z at the

midpoint:
Vi1 — Vi

wz/'Jrl/Q,j = Az (12)

Similarly, for all the interior points where there are no jumps in y, we dis-
cretize 0y /0y:
Vi — Vi

¢z/‘,j+1/2 = Ay . (13)

For any points where there is a jump in x to be incorporated in the discretiza-
tion, we approximate o /0x at & = w41/ by fitting a quadratic polynomial
through the values 97 ;, ;41 and ¥;19;, and then evaluating its slope at
T = Tjy1/2,; - Similarly, for any points where there is a jump in y, we need to
approximate 01 /0y at y = y; j11/2 by fitting a quadratic polynomial through
the values v; 5, ¥; j41 and v; j12, and evaluating its slope at y = y; j11/2.

3 Numerical result

In this section, we present four simple problems to demonstrate the algo-
rithm. The first problem is the 1D Poisson equation 1., = exp(z). Figure 2
shows that the analytic expression for the error is very accurate (left) and
the algorithm is second-order accurate with the RMS and maximum errors
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-5 d? y/ dx2=exp(x)
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FIGURE 2: Plot comparing numerical and theoretical error (left) and plot
of the RMS and maximum errors (right) for the 1D Poisson equation with

f() = exp(x).
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FIGURE 3: Plot of the numerical solution (left) and plot of the RMS and
maximum errors (right) for the Poisson equation on the interior of a circle of
radius one with f(x,y) = sgn(z) and with zero Dirichlet boundary condition.
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FIGURE 4: Plot of numerical solution (left) and plot of the RMS and max-
imum errors (right) for the Poisson equation on Q = {(r,0);r < 0.30 +
0.15cos 660} with f(r,0) = 7r?cos 36 on the interior of the domain and non-
zero Dirichlet boundary conditions chosen to ensure continuity with the in-
terior solution, that is, (¢(r,0) = r*cos 30)

converging as O((Ax)?). The second test problem is the 2D Poisson equa-
tion (1) with © the interior of the unit circle and zero Dirichlet boundary
condition on 0f2. We take f(z,y) = sgn(z). Figure 3 shows the numerical
solution (left) and the RMS and maximum errors (right) demonstrating the
second-order accuracy of the method. The third problem is the 2D Poisson
equation ¥, + 1, = 7r*cos36 on Q = {(r,0);r < 0.30 + 0.15cos 66} and
non-zero Dirichlet boundary condition on 052, consistent with the given form
of the Poisson equation. Figure 4 shows the numerical solution (left) and the
RMS and maximum errors (right) which again shows second-order accuracy.

The final problem is the 2D Poisson equation V% = —2cos(x + y) on
the unit circle, with Dirichlet boundary condition chosen to ensure continuity
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FIGURE 5: The 2D problem V?i = —2cos(z + y), with NAz = 2.4 and
N = 40 (panel (a) and (b)), subject to ¢ = cos(x + y) on the boundary of
the unit circle. In (a) plots of error at constant values of y. In (b) the actual
numerical errors are shown at all points on the boundary, these are taken
as running clockwise from (z,y) = (—1,0) (labelled 1-96) and the errors are
shown as a dash-dotted curve, where there are sequences of adjacent non-
corner points, the dash-dotted line for the numerical error is replaced with a
solid line. For non-corner points, the 1D full quadratic error of (10) for the
x-direction and the equivalent in the y-direction are shown as open circle.
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from within, that is: ) = cos(z + y). Outside the unit circle we set ¢ = 0.
In the first panel 5(a) the numerical error for the whole domain is plotted.
In panel (b) we show the boundary error (with N = 40, so there are 96
boundary points). As we only have available the 1D expressions, we can
only make comparison at points on the boundary which essentially use 1D
contribution (non-corner points). Although the agreement is not exact, we
see a quite reasonable estimation of the errors at the boundaries.

4 Conclusion

In this paper, we present a finite-difference method for the solution of the
Poisson equation. For the 1D case we have determined explicit forms for
the error involved, following the idea of Johansen and Colella [2]. In agree-
ment with them [2] we find that the end-point error is O((Ar)?) and so has
negligible influence, with the total error being dominated by the internal er-
ror. Although no expression for error have been derived for the 2D case, we
have found that for boundary points that are not corner points (that is, the
quadratic fitting contribution at the boundary point is only one directional
for non-corner point), the 1D error expressions, in either the z- or y-directions
as appropriate, give good estimates for the 2D boundary error. If local grid
refinement is to be used together with our method then issues like matching
of the solution at grid interfaces will need to be considered (for more details,

see [6]).
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