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A series method for the eigenvalues of the
advection diffusion equation
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Abstract

In steady hill slope seepage problems, the advection diffusion equa-
tion can be conformally transformed to a semi-regular solution domain
using (φ, ψ) coordinates. Uniform flow in the (φ, ψ) domain reduces
the advection diffusion equation to a simpler version with constant
coefficients. The solutions depend on finding the eigenvalues (or natu-
ral frequencies) of an (elliptic) Helmholtz equation. In the absence of
natural frequencies, this equation can be solved for nonzero boundary
conditions using analytic series methods. In this paper, we present
a pseudo-spectral approach to solve for the series coefficients. At the
natural frequencies, the determinant of the coefficient matrix becomes
zero, thus marking the natural frequencies. We present some prelimi-
nary results and identify natural frequencies for a set of test problems.
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1 Introduction

The management and conservation of subsurface water resources is extremely
important in the current environmentally conscious society. Quantitative
knowledge of the advection and diffusion processes of solutes through satu-
rated aquifers is crucial in the development of effective management policies.
This is particularly true in a relatively dry country like Australia, where
groundwater is an essential natural resource. For example, solute transport
can occur when increases in the water table elevation are caused by the re-
moval of large surface vegetation, followed by the introduction of irrigated
agriculture. More generally, contaminants can be carried from any surface
source, through the vadose zone and across the water table, to then be trans-
ported though the groundwater system.
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The advective-diffusive process is governed by the flow equation and the
transport equation. It can be extremely difficult to obtain accurate solutions
to the transport equation, even when the flow field is known precisely. This
problem is heightened by the large length to depth ratios common in most
practical problems. Analytical solutions are available for regular infinite
and semi-infinite flow domains, where the seepage velocity is constant [1, 2].
However, in practice aquifers are of irregular, finite shape and the seepage
velocities are usually not uniform.

Analytic series solutions for the flow equations are obtained for steady
seepage through irregular flow domains [3, 4, 5, 6]. As a consequence, the
flow field are accurately and efficiently determined throughout the entire
flow domain, and attention focused on solving the transport equation. For
problems in two dimensions, both the potential solution φ and the conjugate
stream function ψ are immediately available. Together they form an orthog-
onal curvilinear coordinate system in which the flow field is uniform. Thus
the advection diffusion equation is conformally transformed to a uniform flow
domain, using (φ, ψ) coordinates [4].

To solve the advection diffusion equation we apply separation of variables
to the transformed problem, reducing it to an eigenvalue problem. After a
simple transformation, we obtain the Helmholtz equation ∇2ϕ + λϕ = 0 .
When λ is not an eigenvalue, this equation is solved using analytic series
methods with non-zero boundary conditions. At the eigenvalues, the coeffi-
cient matrix (for the series coefficients) is singular, and the equation cannot
be solved. In this paper, we develop a pseudo-spectral method to determine
the matrix equation for the series coefficients. We present the eigenvalue
spectra for five test problems, and discuss these results.

This paper is organised as follows. In Section 2, a formal mathematical
description of the problem is given, together with details of the transforma-
tion process. The series solution method is described in Section 3, followed
by the test problem results in Section 4.2. Finally, the method and results
are discussed in Section 5.
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Figure 1: Schematic of the flow domain (a) and transformed domain (b)

2 Mathematical Problem Description

The flow problem in the original coordinates reduces to solving Laplace’s
equation ∇2φ = 0 for the hydraulic head φ(X,Y ), subject to suitable bound-
ary conditions. Analytic series solutions are readily obtained for saturated
and steady seepage for almost arbitrary flow domain geometries and seepage
rates [3, 5, 6]. Due to the analytic nature of the solution, the conjugate
stream function ψ(X, Y ) is also immediately available. Both φ and ψ are
available continuously throughout the flow domain, and together form an or-
thogonal coordinate system. A schematic of the original flow domain in the
(X, Y ) coordinate system and the transformed domain in the (φ, ψ) system
is given in Figure 1. Typically, lengths in the X direction may be two orders
of magnitude larger than those in the Y direction. In Figure 1(a), the X axis
has been scaled and so the contours φ = constant and ψ = constant do not
appear to be orthogonal as would normally be the case.
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2.1 The advection diffusion equation

In the (X,Y ) coordinate system, the advection diffusion equation for the
concentration C(X, Y, t) is [2]
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where the velocity field

u = (u, v) = −∇φ , (2)

(and with ū = |u| =
√
u2 + v2). For diffusivities of the form Dαβ = d0

αβ +
d1
αβū , where the diαβ are constant, equation (1) transforms to
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in the (φ, ψ) system [1, 4]. The coefficient of the advection term is positive,
not negative—this is due to the negative potential in equation (2). As a first
approximation, ū is taken to be a constant throughout the flow domain. This
is a good approximation except near the water table and the seepage face.
Equation (3) becomes

1

ū2
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2.2 Modal solutions

We represent the solution to equation (4) as a sum of modal solutions σn(φ, ψ)
that are independent of t:

C(φ, ψ, t) =
∞∑
n=0

Anσn(φ, ψ)e−ū
2γ2

nt . (5)
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Substituting into equation (4), we find that σn satisfies

Dφ
∂2σn
∂φ2

+Dψ
∂2σn
∂ψ2

+
∂σn
∂φ

+ γ2
nσn = 0 . (6)

This equation is transformed to the Helmholtz equation by the independent
variable transformation

φ =
√
Dφx , ψ =

√
Dψy , (7)

followed by the dependent variable transformation

σn(x, y) = e−x/2
√
Dφϕn(x, y) . (8)

After these transformations, ϕn(x, y) satisfies

∇2ϕn(x, y) + λnϕn(x, y) = 0 , (9)

where

λn = γ2
n −

1

2
√
Dφ

. (10)

In principle, the general solution to the original problem can be obtained
once the eigenvalues and eigenfunctions of equation (9) have been obtained
for the transformed flow geometry. In fact, it may turn out that the func-
tions σn(x, y) are not well-conditioned. This in turn means that the coeffi-
cients An in the expansion for C may be large and that equation (5) for the
time development of C will rely on cancellations of large numbers. This issue
has been discussed by Reddy and Trefethen [7].

3 Series Solution

For any fixed value of λ, solutions to the Helmholtz equation (9) are obtained
using series methods. (Such solutions will generally not satisfy the boundary
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conditions.) Applying separation of variables, we assume a solution of the
form

ϕ(x, y) = X(x)Y (y) . (11)

After substitution into the differential equation, we obtain two ordinary dif-
ferential equations for X(x) and Y (y):

X ′′
k + µkXk = 0 , Y ′′

k − (µk − λ)Yk = 0 , (12)

where µk is a constant of separation. If homogeneous boundary conditions
are imposed on the side boundaries at x = x0 and x = x1 , that is,

a0Xk(x0) + b0X
′
k(x0) = 0 , a1Xk(x1) + b1X

′
k(x1) = 0 , (13)

then the eigenfunctions Xk(x) and the constant of separation µk are de-
termined. Furthermore, if we assume that ϕ(x, y) is zero on the bottom
boundary, y = 0 , then the solution for ϕ(x, y) is written as

ϕ(x, y) =
∞∑
k=1

Akvk(x, y) , (14)

where vk(x, y) = Xk(x)Yk(y) . The expansion coefficients Ak are obtained
from the top boundary condition. That is, along y = f t(x) ,

ht(x) =
∞∑
k=1

Akvk(x, f
t(x)) =

∞∑
k=1

Akv
t
k(x) , (15)

for some function ht(x) (not necessarily zero).

3.1 Evaluation of the series coefficients

In this paper, we take a pseudo–spectral approach to evaluate the series
coefficients An. First, we truncate the series after N terms, and collocate
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along the top boundary at N collocation points xi, i = 1, . . . , N :

ht(xi) =
N∑
k=1

Akv
t
k(xi) , for k = 1, . . . , N . (16)

In matrix form
Vta = ht , (17)

where, for i, k = 1, 2, . . . , N ,

Vt
ik = vtk(xi) , hti = ht(xi) , ai = Ai . (18)

The matrix equation (17) can always be solved, unless the collocation ma-
trix Vt is singular. In the case of homogeneous boundary conditions, non-
trivial solutions will exist only if Vt is singular. We assume that this can
only occur when λ is an eigenvalue or natural frequency of the Helmholtz
equation (9), and (14) is an eigenfunction.

4 Results

We examine the effectiveness of this method on a test problem related to
(but not the same as) the transformed flow domain given in Figure 1. We
choose a sequence of five test geometries, and compare the evolution of the
eigenvalue spectrum as we progressively move from a known problem to the
final geometry.

4.1 Test problems

The geometry of the test problems is related to the unit square whose eigen-
values are readily determined. The bottom boundary and side boundaries
are the same for each of the five test problems, namely

y = 0 , 0 ≤ x ≤ 1 ; x = 0 , 0 ≤ y ≤ w ; x = 1 , 0 ≤ y ≤ w . (19)
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The five top boundaries are

y = f t(x,w) = w + 4(1− w)x(1− x) , w = 0 : 0.25 : 1 . (20)

Note that for w = 1 , the test problem corresponds to the unit square, and for
w = 0 , the upper boundary is a quadratic of height one, symmetric about
x = 0.5 . In this last case, the vertical side boundaries only apply at the
corners (0, 0) and (1, 0)—even though they appear to be irrelevant, we use
them to fully define the eigenvalue/eigenfunction problem in equations (12)
and (13). The five flow geometries are shown in Figure 2.

Given the boundaries, the problem will be fully defined once the boundary
values of ϕ(x, y) are given. In this paper, we choose Dirichlet boundary
conditions. That is,

ϕ(0, y) = ϕ(1, y) = 0 , 0 ≤ y ≤ w ; (21)

ϕ(x, 0) = ϕ(x, f t(w, x)) = 0 , 0 ≤ x ≤ 1 . (22)

4.2 Test Spectra

For the boundary geometry and conditions given in Section 4.1, µk = k2π2

and the expansion functions vk(x, y) in equation (14) become

vk(x, y) = Yk(y) sin kπx , (23)

where

Yk(y) =

{
sin γky , k ≤ n0 ,
sinh γky/ cosh γk , k > n0 ,

(24)

with

γ2
k = |λ− k2π2| and n0 =

⌊√
λ

π

⌋
. (25)
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Figure 2: Flow geometries for the five test problems
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Figure 3: The spectra for the five test geometries. The vertical lines give
the known eigenvalues for w = 1 (the “box” example).
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Note that cosh γk, a scaling term for Yk(y), k > n0 , is used to improve the
conditioning of the collocation matrix. Since equation (23) is an expansion in
sine functions, equally spaced collocation points appear to be the best choice
for this set of test problems. We use eleven terms (N = 11) in the truncated
series approximation (equation (14)) for ϕ(x, y).

We now calculate the determinant of the collocation matrix Vt for a
contiguous set of values of λ—at the natural frequencies of each problem,
the determinant will approach zero. The eigenvalues λmn of the Helmholtz
equation (9) for the unit square with Dirichlet boundary conditions are

λmn
π2

= m2 + n2 , m, n = 1, 2, . . . . (26)

The first eight eigenvalues are 2, 5, 8, 10, 13, 17, 18, 20. To test the approach
developed in this paper, we use 503 equally spaced values of λ, 0 < λ/π2 ≤ 20.
We choose 503 points (rather than 500) so that λ does not fall exactly on an
eigenvalue of the first test problem. The magnitude of the determinant for
each of the five test problems is given in Figure 3.

5 Discussion

We have shown how an analytic series method is used to obtain approx-
imations to the eigenvalues of the Helmholtz equation with homogeneous
boundary conditions on non-rectangular boundaries. The next stage in the
problem is to obtain the solutions for ϕ from the solution of Vta = 0 for each
of the eigenvalues.

At this stage it is interesting to note some of the features of the results
in Figure 3. For the problem defined on a rectangular domain (w = 0), the
frequencies are given by equation (26). There are three types of frequen-
cies. The frequencies with m or n equal to zero have been labelled irregular
frequencies. They correspond to ϕ ≡ 0 . These ‘solutions’ do not appear if
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the ‘method of particular solutions’ as described by Betcke and Trefethen [8]
is used. Those frequencies with m = n are single frequencies. Those with
m 6= n are double frequencies. These different types of frequency change in
different ways with the changes in geometry.

See that the irregular frequencies remain at the same values (λ/π2 =
1, 4, 9, . . .) as for the rectangular domain. The single frequencies (λ/π2 =
2, 8, . . . for the rectangular domain) increase as the value of w is reduced.
The double frequencies (λ/π2 = 5, 10, . . .) also increase, but at the same
time they bifurcate into two separate frequencies as w decreases. Some of
these features are absent for w = 0 . We believe that this is a result of low
resolution in the values of λ, rather than any fundamental difference in the
solution for that value. This and other issues raised in this paper are topics
of current research.
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